• Chinese Journal of Lasers
  • Vol. 49, Issue 20, 2007208 (2022)
Gen Mu1、2, Zhenhui Zhang1、2, and Yujiao Shi1、2、*
Author Affiliations
  • 1MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
  • 2Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, Guangdong, China
  • show less
    DOI: 10.3788/CJL202249.2007208 Cite this Article Set citation alerts
    Gen Mu, Zhenhui Zhang, Yujiao Shi. Photoacoustic Imaging Technology in Biomedical Imaging[J]. Chinese Journal of Lasers, 2022, 49(20): 2007208 Copy Citation Text show less
    References

    [1] Tam A C. Applications of photoacoustic sensing techniques[J]. Reviews of Modern Physics, 58, 381-431(1986).

    [2] Manohar S, Razansky D. Photoacoustics: a historical review[J]. Advances in Optics and Photonics, 8, 586-617(2016).

    [3] Wang L H, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [4] Yao J J, Wang L V. Perspective on fast-evolving photoacoustic tomography[J]. Journal of Biomedical Optics, 26, 060602(2021).

    [5] Xia J, Yao J J, Wang L V. Photoacoustic tomography: principles and advances[J]. Electromagnetic Waves, 147, 1-22(2014).

    [6] Zhang P F, Li L, Lin L et al. High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo[J]. Journal of Biophotonics, 11, e201700024(2018).

    [7] Li G, Li L, Zhu L R et al. Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array[J]. Journal of Biomedical Optics, 20, 066010(2015).

    [8] Zhang G P, Deng L J, Bai Y et al. Recent advances in photoacoustic tomography based on circular array transducer[J]. Laser & Optoelectronics Progress, 57, 120004(2020).

    [9] Li L, Zhu L R, Ma C et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution[J]. Nature Biomedical Engineering, 1, 71(2017).

    [10] Lin L, Hu P, Shi J H et al. Single-breath-hold photoacoustic computed tomography of the breast[J]. Nature Communications, 9, 2352(2018).

    [11] Lin L, Hu P, Tong X et al. High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation[J]. Nature Communications, 12, 882(2021).

    [12] Wray P, Lin L, Hu P et al. Photoacoustic computed tomography of human extremities[J]. Journal of Biomedical Optics, 24, 026003(2019).

    [13] Tian C, Pei M L, Shen K et al. Impact of system factors on the performance of photoacoustic tomography scanners[J]. Physical Review Applied, 13, 014001(2020).

    [14] Wong T T W, Zhou Y, Garcia-Uribe A et al. Use of a single xenon flash lamp for photoacoustic computed tomography of multiple-centimeter-thick biological tissue ex vivo and a whole mouse body in vivo[J]. Journal of Biomedical Optics, 22, 041003(2017).

    [15] Upputuri P K, Pramanik M. Dynamic in vivo imaging of small animal brain using pulsed laser diode-based photoacoustic tomography system[J]. Journal of Biomedical Optics, 22, 090501(2017).

    [16] Hariri A, Lemaster J, Wang J X et al. The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging[J]. Photoacoustics, 9, 10-20(2018).

    [17] Allen T J, Beard P C. High power visible light emitting diodes as pulsed excitation sources for biomedical photoacoustics[J]. Biomedical Optics Express, 7, 1260-1270(2016).

    [18] Wang D P, Wang Y H, Wang W R et al. Deep tissue photoacoustic computed tomography with a fast and compact laser system[J]. Biomedical Optics Express, 8, 112-123(2017).

    [19] Fatima A, Kratkiewicz K, Manwar R et al. Review of cost reduction methods in photoacoustic computed tomography[J]. Photoacoustics, 15, 100137(2019).

    [20] Xu M H, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography[J]. Physical Review E, 71, 016706(2005).

    [21] Yang D, Xing D, Gu H M et al. Fast multielement phase-controlled photoacoustic imaging based on limited-field-filtered back-projection algorithm[J]. Applied Physics Letters, 87, 194101(2005).

    [22] Treeby B E, Zhang E Z, Cox B T. Photoacoustic tomography in absorbing acoustic media using time reversal[J]. Inverse Problems, 26, 115003(2010).

    [23] Baddour N. Theory and analysis of frequency-domain photoacoustic tomography[J]. The Journal of the Acoustical Society of America, 123, 2577-2590(2008).

    [24] Schulze R J, Scherzer O, Zangerl G et al. On the use of frequency-domain reconstruction algorithms for photoacoustic imaging[J]. Journal of Biomedical Optics, 16, 086002(2011).

    [25] Huang K, Chen P, Liu W W et al. Reconstruction for sparse-view sampling photoacoustic signals based on dictionary learning[J]. Acta Optica Sinica, 38, 1117002(2018).

    [26] Ephrat P, Keenlislide L, Seabrook A et al. Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction[J]. Journal of Biomedical Optics, 13, 054052(2008).

    [27] Guo Z J, Li C H, Song L et al. Compressed sensing in photoacoustic tomography in vivo[J]. Journal of Biomedical Optics, 15, 021311(2010).

    [28] Liang D, DiBella E V R, Chen R R et al. K-t ISD: dynamic cardiac MR imaging using compressed sensing with iterative support detection[J]. Optics Express, 20, 16510-16523(2012).

    [29] Gröhl J, Schellenberg M, Dreher K et al. Deep learning for biomedical photoacoustic imaging: a review[J]. Photoacoustics, 22, 100241(2021).

    [30] Hauptmann A, Cox B T. Deep learning in photoacoustic tomography: current approaches and future directions[J]. Journal of Biomedical Optics, 25, 112903(2020).

    [31] Awasthi N, Jain G, Kalva S K et al. Deep neural network-based sinogram super-resolution and bandwidth enhancement for limited-data photoacoustic tomography[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 2660-2673(2020).

    [32] Antholzer S, Haltmeier M, Schwab J. Deep learning for photoacoustic tomography from sparse data[J]. Inverse Problems in Science and Engineering, 27, 987-1005(2019).

    [33] Lan H R, Jiang D H, Gao F et al. Deep learning enabled real-time photoacoustic tomography system via single data acquisition channel[J]. Photoacoustics, 22, 100270(2021).

    [34] Lan H R, Jiang D H, Yang C C et al. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo[J]. Photoacoustics, 20, 100197(2020).

    [35] Shen K, Liu S D, Shi J H et al. Dual-domain neural network for sparse-view photoacoustic image reconstruction[J]. Chinese Journal of Lasers, 49, 0507208(2022).

    [36] Seong M, Chen S L. Recent advances toward clinical applications of photoacoustic microscopy: a review[J]. Science China Life Sciences, 63, 1798-1812(2020).

    [37] Long X Y, Tian C. Biomedical photoacoustic microscopy: advances in technology and applications[J]. Chinese Journal of Lasers, 47, 0207016(2020).

    [38] Jeon S, Kim J, Lee D et al. Review on practical photoacoustic microscopy[J]. Photoacoustics, 15, 100141(2019).

    [39] Zhang C, Maslov K, Wang L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 35, 3195-3197(2010).

    [40] Song W, Zheng W, Liu R M et al. Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution[J]. Biomedical Optics Express, 5, 4235-4241(2014).

    [41] Wang L D, Zhang C, Wang L H. Grueneisen relaxation photoacoustic microscopy[J]. Physical Review Letters, 113, 174301(2014).

    [42] Shi J H, Wong T T W, He Y et al. High-resolution high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 13, 609-615(2019).

    [43] Gao R K, Xu Z Q, Ren Y G et al. Nonlinear mechanisms in photoacoustics: powerful tools in photoacoustic imaging[J]. Photoacoustics, 22, 100243(2021).

    [44] Yao J J, Wang L D, Li C Y et al. Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging[J]. Physical Review Letters, 112, 014302(2014).

    [45] Jeon S, Park J, Managuli R et al. A novel 2-D synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy[J]. IEEE Transactions on Medical Imaging, 38, 250-260(2019).

    [46] Park J, Jeon S, Meng J et al. Delay-multiply-and-sum-based synthetic aperture focusing in photoacoustic microscopy[J]. Journal of Biomedical Optics, 21, 036010(2016).

    [47] Hu Y C, Chen Z J, Xiang L Z et al. Extended depth-of-field all-optical photoacoustic microscopy with a dual non-diffracting Bessel beam[J]. Optics Letters, 44, 1634-1637(2019).

    [48] Yang X Q, Song X L, Jiang B W et al. Multifocus optical-resolution photoacoustic microscope using ultrafast axial scanning of single laser pulse[J]. Optics Express, 25, 28192-28200(2017).

    [49] Zhang C, Zhao H X, Xu S et al. Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror[J]. Optics Letters, 45, 4312-4315(2020).

    [50] Wang K Y, Li C Y, Chen R M et al. Recent advances in high-speed photoacoustic microscopy[J]. Photoacoustics, 24, 100294(2021).

    [51] Cho S W, Park S M, Park B et al. High-speed photoacoustic microscopy: a review dedicated on light sources[J]. Photoacoustics, 24, 100291(2021).

    [52] Liu Q, Jin T, Chen Q et al. Research progress of miniaturized photoacoustic imaging technology in biomedical field[J]. Chinese Journal of Lasers, 47, 0207019(2020).

    [53] Wang L D, Maslov K, Yao J J et al. Fast voice-coil scanning optical-resolution photoacoustic microscopy[J]. Optics Letters, 36, 139-141(2011).

    [54] Chen Q, Guo H, Jin T et al. Ultracompact high-resolution photoacoustic microscopy[J]. Optics Letters, 43, 1615-1618(2018).

    [55] Park K, Kim J Y, Lee C et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 7, 13359(2017).

    [56] Lee J, Han S, Seong D et al. Fully waterproof two-axis galvanometer scanner for enhanced wide-field optical-resolution photoacoustic microscopy[J]. Optics Letters, 45, 865-868(2020).

    [57] Kim J, Kim J Y, Jeon S et al. Super-resolution localization photoacoustic microscopy using intrinsic red blood cells as contrast absorbers[J]. Light: Science & Applications, 8, 103(2019).

    [58] Lan B X, Liu W, Wang Y C et al. High-speed widefield photoacoustic microscopy of small-animal hemodynamics[J]. Biomedical Optics Express, 9, 4689-4701(2018).

    [59] Zhu X Y, Huang Q, DiSpirito A et al. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy[J]. Light: Science & Applications, 11, 138(2022).

    [60] Xia J, Li G, Wang L D et al. Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy[J]. Optics Letters, 38, 5236-5239(2013).

    [61] Li Y, Wong T T W, Shi J H et al. Multifocal photoacoustic microscopy using a single-element ultrasonic transducer through an ergodic relay[J]. Light: Science & Applications, 9, 135(2020).

    [62] Li X F, Kang L, Zhang Y et al. High-speed label-free ultraviolet photoacoustic microscopy for histology-like imaging of unprocessed biological tissues[J]. Optics Letters, 45, 5401-5404(2020).

    [63] Qiao W, Chen Z J. All-optically integrated photoacoustic and optical coherence tomography: a review[J]. Journal of Innovative Optical Health Sciences, 10, 1730006(2017).

    [64] Li J, Li S, Chen J J et al. Progress and biomedical application of non-contact photoacoustic imaging[J]. Chinese Journal of Lasers, 48, 1918005(2021).

    [65] Guo Z D, Li G Y, Chen S L. Miniature probe for all-optical double gradient-index lenses photoacoustic microscopy[J]. Journal of Biophotonics, 11, e201800147(2018).

    [66] Li H, Dong B Q, Zhang Z et al. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy[J]. Scientific Reports, 4, 4496(2014).

    [67] Allen T J, Ogunlade O, Zhang E et al. Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor[J]. Biomedical Optics Express, 9, 650-660(2018).

    [68] Fu W B, Liang Y Z, Zhong X X et al. Optical fiber photoacoustic blood oxygen saturation measurement and functional imaging[J]. Acta Optica Sinica, 42, 2017001(2022).

    [69] Chen Z J, Yang S H, Wang Y et al. Noncontact broadband all-optical photoacoustic microscopy based on a low-coherence interferometer[J]. Applied Physics Letters, 106, 043701(2015).

    [70] Hajireza P, Shi W, Bell K et al. Non-interferometric photoacoustic remote sensing microscopy[J]. Light: Science & Applications, 6, e16278(2017).

    [71] Guo H, Li Y, Qi W Z et al. Photoacoustic endoscopy: a progress review[J]. Journal of Biophotonics, 13, e202000217(2020).

    [72] Piao Z L, Ma T, Li J W et al. High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 μm[J]. Applied Physics Letters, 107, 083701(2015).

    [73] Yang J M, Li C Y, Chen R M et al. Optical-resolution photoacoustic endomicroscopy in vivo[J]. Biomedical Optics Express, 6, 918-932(2015).

    [74] Li X, Xiong K, Yang S. Large-depth-of-field optical-resolution colorectal photoacoustic endoscope[J]. Applied Physics Letters, 114, 163703(2019).

    [75] Guo Z D, Li Y, Chen S L. Miniature probe for in vivo optical- and acoustic-resolution photoacoustic microscopy[J]. Optics Letters, 43, 1119-1122(2018).

    [76] Guo H, Song C L, Xie H K et al. Photoacoustic endomicroscopy based on a MEMS scanning mirror[J]. Optics Letters, 42, 4615-4618(2017).

    [77] Ansari R, Zhang E Z, Desjardins A E et al. All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy[J]. Light: Science & Applications, 7, 75(2018).

    [78] Ansari R, Zhang E Z, Desjardins A E et al. Miniature all-optical flexible forward-viewing photoacoustic endoscopy probe for surgical guidance[J]. Optics Letters, 45, 6238-6241(2020).

    [79] Li G Y, Guo Z D, Chen S L. Miniature probe for forward-view wide-field optical-resolution photoacoustic endoscopy[J]. IEEE Sensors Journal, 19, 909-916(2019).

    [80] Cai D, Li G Y, Xia D Q et al. Synthetic aperture focusing technique for photoacoustic endoscopy[J]. Optics Express, 25, 20162-20171(2017).

    [81] Li G Y, Guo Z D, Chen S L. Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging[J]. Optics Express, 25, 25023-25035(2017).

    [82] Xiong K D, Yang S H, Li X W et al. Autofocusing optical-resolution photoacoustic endoscopy[J]. Optics Letters, 43, 1846-1849(2018).

    [83] Yang J M, Favazza C, Chen R M et al. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo[J]. Nature Medicine, 18, 1297-1302(2012).

    [84] Li Y, Lin R Q, Liu C B et al. In vivo photoacoustic/ultrasonic dual-modality endoscopy with a miniaturized full field-of-view catheter[J]. Journal of Biophotonics, 11, e201800034(2018).

    [85] Basij M, Yan Y, Alshahrani S S et al. Miniaturized phased-array ultrasound and photoacoustic endoscopic imaging system[J]. Photoacoustics, 15, 100139(2019).

    [86] Dai X J, Yang H, Shan T Q et al. Miniature endoscope for multimodal imaging[J]. ACS Photonics, 4, 174-180(2017).

    [87] Mathews S J, Little C, Loder C D et al. All-optical dual photoacoustic and optical coherence tomography intravascular probe[J]. Photoacoustics, 11, 65-70(2018).

    [88] Caravaca-Aguirre A M, Singh S, Labouesse S et al. Hybrid photoacoustic-fluorescence microendoscopy through a multimode fiber using speckle illumination[J]. APL Photonics, 4, 096103(2019).

    [89] Mezil S, Caravaca-Aguirre A M, Zhang E Z et al. Single-shot hybrid photoacoustic-fluorescent microendoscopy through a multimode fiber with wavefront shaping[J]. Biomedical Optics Express, 11, 5717-5727(2020).

    [90] Liu N, Yang S H, Xing D. Photoacoustic and hyperspectral dual-modality endoscope[J]. Optics Letters, 43, 138-141(2018).

    [91] Wang P P, Chen Z J, Yang F et al. Intravascular tri-modality system: combined ultrasound, photoacoustic, and elasticity imaging[J]. Applied Physics Letters, 113, 253701(2018).

    [92] Jin D Y, Yang F, Chen Z J et al. Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease[J]. Applied Physics Letters, 111, 103703(2017).

    [93] Zhao P Y, Chen Z J. Progress of multimodal photoacoustic imaging and its application in ophthalmology[J]. Laser & Optoelectronics Progress, 59, 0617014(2022).

    [94] Upputuri P K, Pramanik M. Recent advances in photoacoustic contrast agents for in vivo imaging[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 12, e1618(2020).

    [95] Fu Q R, Zhu R, Song J B et al. Photoacoustic imaging: contrast agents and their biomedical applications[J]. Advanced Materials, 31, e1805875(2019).

    [96] Yao J J, Wang L V. Recent progress in photoacoustic molecular imaging[J]. Current Opinion in Chemical Biology, 45, 104-112(2018).

    [97] Chen Y S, Zhao Y, Yoon S J et al. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window[J]. Nature Nanotechnology, 14, 465-472(2019).

    [98] Bouché M, Hsu J C, Dong Y C et al. Recent advances in molecular imaging with gold nanoparticles[J]. Bioconjugate Chemistry, 31, 303-314(2020).

    [99] Li W W, Chen X Y. Gold nanoparticles for photoacoustic imaging[J]. Nanomedicine, 10, 299-320(2015).

    [100] Huang K, Li Z J, Lin J et al. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications[J]. Chemical Society Reviews, 47, 5109-5124(2018).

    [101] Cheng L, Liu J J, Gu X et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy[J]. Advanced Materials, 26, 1886-1893(2014).

    [102] de la Zerda A, Liu Z, Bodapati S et al. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice[J]. Nano Letters, 10, 2168-2172(2010).

    [103] Lee C, Kwon W, Beack S et al. Biodegradable nitrogen-doped carbon nanodots for non-invasive photoacoustic imaging and photothermal therapy[J]. Theranostics, 6, 2196-2208(2016).

    [104] Lovell J F, Jin C S, Huynh E et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents[J]. Nature Materials, 10, 324-332(2011).

    [105] Yin C, Tang Y F, Li X Z et al. A single composition architecture-based nanoprobe for ratiometric photoacoustic imaging of glutathione (GSH) in living mice[J]. Small, 14, e1703400(2018).

    [106] Tang W, Yang Z, Wang S et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy[J]. ACS Nano, 12, 2610-2622(2018).

    [107] Pu K Y, Shuhendler A J, Jokerst J V et al. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice[J]. Nature Nanotechnology, 9, 233-239(2014).

    [108] Zhen X, Pu K Y, Jiang X Q. Photoacoustic imaging and photothermal therapy of semiconducting polymer nanoparticles: signal amplification and second near-infrared construction[J]. Small, 17, 2004723(2021).

    [109] Lu G L, Fei B W. Medical hyperspectral imaging: a review[J]. Journal of Biomedical Optics, 19, 010901(2014).

    [110] Upputuri P K, Pramanik M. Photoacoustic imaging in the second near-infrared window: a review[J]. Journal of Biomedical Optics, 24, 040901(2019).

    [111] Zhou C Y, Zhang L, Sun T et al. Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy[J]. Advanced Materials, 33, e2006532(2021).

    [112] Li L T, Chen H Z, Shi Y J et al. Human-body-temperature triggerable phase transition of W-VO2@PEG nanoprobes with strong and switchable NIR-II absorption for deep and contrast-enhanced photoacoustic imaging[J]. ACS Nano, 16, 2066-2076(2022).

    [113] Teng L L, Song G S, Liu Y C et al. Nitric oxide-activated “dual-key-one-lock” nanoprobe for in vivo molecular imaging and high-specificity cancer therapy[J]. Journal of the American Chemical Society, 141, 13572-13581(2019).

    [114] Li J, Yao Y X, Jiang L W et al. Time-domain terahertz optoacoustics: manipulable water sensing and dampening[J]. Advanced Photonics, 026003(2021).

    [115] Meng Z Q, Zhou X F, She J L et al. Ultrasound-responsive conversion of microbubbles to nanoparticles to enable background-free in vivo photoacoustic imaging[J]. Nano Letters, 19, 8109-8117(2019).

    [116] Cui D D, Shi Y J, Xing D et al. Ultrahigh sensitive and tumor-specific photoacoustography in NIR-II region: optical writing and redox-responsive graphic fixing by AgBr@PLGA nanocrystals[J]. Nano Letters, 21, 6914-6922(2021).

    [117] Wei C W, Lombardo M, Larson-Smith K et al. Nonlinear contrast enhancement in photoacoustic molecular imaging with gold nanosphere encapsulated nanoemulsions[J]. Applied Physics Letters, 104, 033701(2014).

    [118] Huang W C, Chen R H, Peng Y et al. In vivo quantitative photoacoustic diagnosis of gastric and intestinal dysfunctions with a broad pH-responsive sensor[J]. ACS Nano, 13, 9561-9570(2019).

    [119] Zheng J D, Zeng Q, Zhang R J et al. Dynamic-reversible photoacoustic probe for continuous ratiometric sensing and imaging of redox status in vivo[J]. Journal of the American Chemical Society, 141, 19226-19230(2019).

    [120] Gao R K, Liu F, Liu W F et al. Background-suppressed tumor-targeted photoacoustic imaging using bacterial carriers[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2121982119(2022).

    [121] Miao Q Q, Pu K Y. Emerging designs of activatable photoacoustic probes for molecular imaging[J]. Bioconjugate Chemistry, 27, 2808-2823(2016).

    [122] Ge X G, Fu Q R, Bai L et al. Photoacoustic imaging and photothermal therapy in the second near-infrared window[J]. New Journal of Chemistry, 43, 8835-8851(2019).

    [123] Lü Y, Li J C, Pu K Y. Second near-infrared absorbing agents for photoacoustic imaging and photothermal therapy[J]. Small Methods, 3, 1900553(2019).

    [124] Gao S, Wang G H, Qin Z N et al. Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy[J]. Biomaterials, 112, 324-335(2017).

    [125] Zhang Y Q, Yu J C, Kahkoska A R et al. Photoacoustic drug delivery[J]. Sensors, 17, 1400(2017).

    [126] Huang J, Liu F Q, Han X X et al. Nanosonosensitizers for highly efficient sonodynamic cancer theranostics[J]. Theranostics, 8, 6178-6194(2018).

    [127] Wang Q, Dai Y N, Xu J Z et al. All-in-one phototheranostics: single laser triggers NIR-II fluorescence/photoacoustic imaging guided photothermal/photodynamic/chemo combination therapy[J]. Advanced Functional Materials, 29, 1901480(2019).

    Gen Mu, Zhenhui Zhang, Yujiao Shi. Photoacoustic Imaging Technology in Biomedical Imaging[J]. Chinese Journal of Lasers, 2022, 49(20): 2007208
    Download Citation