• Photonics Research
  • Vol. 9, Issue 2, 243 (2021)
Siyu Zhou1, Vunam Le1, Shilin Xiong1, Yuetang Yang1, Kai Ni2, Qian Zhou2, and Guanhao Wu1、*
Author Affiliations
  • 1State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • 2Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
  • show less
    DOI: 10.1364/PRJ.412898 Cite this Article Set citation alerts
    Siyu Zhou, Vunam Le, Shilin Xiong, Yuetang Yang, Kai Ni, Qian Zhou, Guanhao Wu. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 243 Copy Citation Text show less
    References

    [1] R. H. Vassar, R. B. Sherwood. Formation keeping for a pair of satellites in a circular orbit. J. Guid. Control Dyn., 8, 235-242(1985).

    [2] A. B. Decou. Orbital station-keeping for multiple spacecraft interferometry. J. Astronaut. Sci., 39, 283-297(1991).

    [3] P. Singla, K. Subbarao, J. Junkins. Adaptive output feedback control for spacecraft rendezvous and docking under measurement uncertainty. J. Guid. Control Dyn., 29, 892-902(2006).

    [4] R. Duren, E. Wong, B. Breckenridge, S. Shaffer, C. Duncan, E. Tubbs, P. Salomon. Metrology, attitude, and orbit determination for spaceborne interferometric synthetic aperture radar. Proc. SPIE, 3365, 51-60(1998).

    [5] H. Bosse, G. Wilkening. Developments at PTB in nanometrology for support of the semiconductor industry. Meas. Sci. Technol., 16, 2155-2166(2005).

    [6] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, H. Kunzmann. Measurement technologies for precision positioning. CIRP Ann., 64, 773-796(2015).

    [7] W. T. Estler, K. L. Edmundson, G. N. Peggs, D. H. Parker. Large-scale metrology–an update. CIRP Ann., 51, 587-609(2002).

    [8] S.-W. Kim. Combs rule. Nat. Photonics, 3, 313-314(2009).

    [9] T. Udem, R. Holzwarth, T. W. Hänsch. Optical frequency metrology. Nature, 416, 233-237(2002).

    [10] S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, N. Bhattacharya. Many-wavelength interferometry with thousands of lasers for absolute distance measurement. Phys. Rev. Lett., 108, 183901(2012).

    [11] K.-N. Joo, S.-W. Kim. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express, 14, 5954-5960(2006).

    [12] K. Minoshima, H. Matsumoto. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt., 39, 5512-5517(2000).

    [13] J. Ye. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett., 29, 1153-1155(2004).

    [14] P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, C. Koos. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887-891(2018).

    [15] M. G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884-887(2018).

    [16] T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, T. Yasui. Dual-comb spectroscopic ellipsometry. Nat. Commun., 8, 610-617(2017).

    [17] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [18] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [19] P. K. C. Wang, F. Y. Hadaegh, K. Lau. Synchronized formation rotation and attitude control of multiple free-flying spacecraft. J. Guid. Control Dyn., 22, 28-35(1999).

    [20] L. Uriarte, M. Zatarain, D. Axinte, J. Yagüe-Fabra, S. Ihlenfeldt, J. Eguia, A. Olarra. Machine tools for large parts. CIRP Ann., 62, 731-750(2013).

    [21] M. Ikram, G. Hussain. Michelson interferometer for precision angle measurement. Appl. Opt., 38, 113-120(1999).

    [22] J. W. Kim, C. S. Kang, J. A. Kim, T. Eom, M. Cho, H. J. Kong. A compact system for simultaneous measurement of linear and angular displacements of nano-stages. Opt. Express, 15, 15759-15766(2007).

    [23] K.-C. Fan, R.-J. Li, P. Xu. Design and verification of micro/nano-probes for coordinate measuring machines. Nanomanuf. Metrol., 2, 1-15(2019).

    [24] W. Gao, Y. Saito, H. Muto, Y. Arai, Y. Shimizu. A three-axis autocollimator for detection of angular error motions of a precision stage. CIRP Ann., 60, 515-518(2011).

    [25] Y. Zhao, B. Zhang, Q. Feng. Measurement system and model for simultaneously measuring 6DOF geometric errors. Opt. Express, 25, 20993-21007(2017).

    [26] T. Schuldt, M. Gohlke, D. Weise, U. Johann, A. Peters, C. Braxmaier. Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor. Classical Quantum Gravity, 26, 085008(2009).

    [27] H. Yan, H.-Z. Duan, L.-T. Li, Y.-R. Liang, J. Luo, H.-C. Yeh. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements. Rev. Sci. Instrum., 86, 123102(2015).

    [28] S. R. Gillmer, R. C. G. Smith, S. C. Woody, J. D. Ellis. Compact fiber-coupled three degree-of-freedom displacement interferometry for nanopositioning stage calibration. Meas. Sci. Technol., 25, 075205(2014).

    [29] F. Yang, M. Zhang, W. Ye, L. Wang. Three-degrees-of-freedom laser interferometer based on differential wavefront sensing with wide angular measurement range. Appl. Opt., 58, 723-728(2019).

    [30] S. Strube, G. Molnar, H.-U. Danzebrink. Compact field programmable gate array (FPGA)-based multi-axial interferometer for simultaneous tilt and distance measurement in the sub-nanometre range. Meas. Sci. Technol., 22, 094026(2011).

    [31] Y.-S. Jang, S.-W. Kim. Distance measurements using mode-locked lasers: a review. Nanomanuf. Metrol., 1, 131-147(2018).

    [32] S. Han, Y.-J. Kim, S.-W. Kim. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses. Opt. Express, 23, 25874-25882(2015).

    [33] X. Liang, J. Lin, L. Yang, T. Wu, Y. Liu, J. Zhu. Simultaneous measurement of absolute distance and angle based on dispersive interferometry. IEEE Photon. Technol. Lett., 32, 449-452(2020).

    [34] Y. Chen, Y. Shimizu, J. Tamada, Y. Kudo, S. Madokoro, K. Nakamura, W. Gao. Optical frequency domain angle measurement in a femtosecond laser autocollimator. Opt. Express, 25, 16725-16738(2017).

    [35] Y. Chen, Y. Shimizu, J. Tamada, K. Nakamura, H. Matsukuma, X. Chen, W. Gao. Laser autocollimation based on an optical frequency comb for absolute angular position measurement. Precis. Eng., 54, 284-293(2018).

    [36] S. Zhou, Z. Zhu, S. Xiong, K. Ni, Q. Zhou, G. Wu. Dual-comb based angle measurement method using a grating and a corner cube combined sensor. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), W4F.5.(2018).

    [37] Z. Zhu, K. Ni, Q. Zhou, G. Wu. Digital correction method for realizing a phase-stable dual-comb interferometer. Opt. Express, 26, 16813-16823(2018).

    [38] S. Zhou, S. Xiong, Z. Zhu, G. Wu. Simplified phase-stable dual-comb interferometer for short dynamic range distance measurement. Opt. Express, 27, 22868-22876(2019).

    [39] S. Zhou, C. Lin, Y. Yang, G. Wu. Multi-pulse sampling dual-comb ranging method. Opt. Express, 28, 4058-4066(2020).

    [40] V. Le, G. Wu, L. Zeng. A single collimating lens based dual-beam exposure system for fabricating long-period grating. Opt. Commun., 460, 125139(2020).

    Siyu Zhou, Vunam Le, Shilin Xiong, Yuetang Yang, Kai Ni, Qian Zhou, Guanhao Wu. Dual-comb spectroscopy resolved three-degree-of-freedom sensing[J]. Photonics Research, 2021, 9(2): 243
    Download Citation