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Precise and fast determination of position and orientation, which is normally achieved by distance and angle
measurements, has broad applications in academia and industry. We propose a dynamic three-degree-of-freedom
measurement technique based on dual-comb interferometry and a self-designed grating-corner-cube (GCC) com-
bined sensor. Benefiting from its unique combination of diffraction and reflection characteristics, the absolute
distance, pitch, and yaw of the GCC sensor can be determined simultaneously by resolving the phase spectra of the
corresponding diffracted beams. We experimentally demonstrate that the method exhibits a ranging precision
(Allan deviation) of 13.7 nm and an angular precision of 0.088 arcsec, alongside a 1 ms reaction time. The pro-
posed technique is capable of precise and fast measurement of distances and two-dimensional angles over long
stand-off distances. A system with such an overall performance may be potentially applied to space missions,
including in tight formation-flying satellites, for spacecraft rendezvous and docking, and for antenna measure-
ment as well as the precise manufacture of components including lithography machines and aircraft-
manufacturing devices. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.412898

1. INTRODUCTION

Precise geometric metrology, including the determination of
positions and orientations, is essential to scientific research
[1–3], remote sensing [4], and advanced manufacturing proc-
esses [5]. At present, the most accurate method of geometric
measurement is based on interferometric phase measurement
[6]. In this case, the geometrical parameters can be directly
traceable to the wavelength of a continuous-wave (CW)
laser. The optical phase of the emitted laser beam accumulates
with the propagation of light waves and exhibits a period of 2π
rad, inducing phase wrapping ambiguity and hindering the ob-
servation of long-distance propagation. Therefore, to obtain
multiple integers of the unambiguous phase, the continuous
accumulation of instant phases based on incremental measure-
ments is required. To expand the range of unambiguity, either
the synthetic-wavelength method or the multiwavelength
method may be applied. However, they both require several
CW lasers, which encumber the system [7].

Over the past few decades, the advent of the optical-
frequency combs (OFCs) has provided discrete and uniform
mode-spacing narrow lines over wide spectra, constructing a
series of stable CW lasers in the frequency domain [8,9].
Various OFC-based methods have been developed for phase

measurement, e.g., the dispersive interferometry method
[10,11], which uses the slope of the interferometric phase with
respect to the optical frequency; the inter-mode beat method,
which utilizes the harmonic phase of the pulse repetition rate
of the OFC [12]; the pulse alignment method, which sweeps
the pulse repetition rate [13]; and the dual-comb method
[14–16]. Among them, the dual-comb method exhibits the ad-
vantages of being dynamic, highly precise, and having a large
unambiguity range; therefore, it has been used as an efficient
tool in optical metrology [17,18]. Usually, phase information
is directly related to the distance of the target. In a multidimen-
sional free space, pitch and yaw also serve as critical parameters
that are used to determine the orientation of a target, e.g., the
orientation of a satellite within a formation [19] and the orien-
tations of constituent parts in aircraft assembly [20].

To realize high-precision distance and angle measurements,
several improved phase measurement principles have been pro-
posed, such as the multi-target interferometric method, the in-
terferometric and autocollimation combined method, the
Twyman–Green interferometer, and differential wavefront
sensing [21–30]. However, each of the four methods suffers
from particular shortcomings. Several targets need to be in-
stalled onto the target to be measured, and considerable distan-
ces need to be maintained between them to improve the
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accuracy of angle measurement via multi-target interferometric
methods. As a result, a sufficiently large base is required in such
cases, to which the required targets may be affixed [21]. The
autocollimation method cannot be applied from long stand-off
distances owing to the limitation of its objective lens’s aperture
[23,24]. Differential wavefront sensing is only capable of
detecting effective interference signals over small rotation
ranges [26–29]. The Twyman–Green interferometer can be
used to measure the displacement and rotation of the target
by measuring the phase and amplitude spectra via a simple de-
vice. As in the case of differential wavefront sensing, the range
of angle measurement is limited by the frequency resolution of
the interference fringes [30]. In recent years, some OFC-based
methods have been proposed for the measurement of distances
and angles [31–35]. Compared to conventional methods,
OFC-based methods are capable of addressing the problem of
phase ambiguity and measuring absolute distances [32,33].
In addition, the wide spectral properties of the OFC can be
utilized to increase the angle measurement range [34,35].
However, these methods are still based on the principles of au-
tocollimation and interferometric methods, and they also suffer
from the aforementioned problems. To the best of our knowl-
edge, a three-degree-of-freedom (three-DOF) measurement
technique capable of simultaneously exhibiting reasonable dy-
namics, precision, unambiguity range, stand-off distance, and
compactness remains elusive.

In this paper, we propose a dynamic three-DOF
measurement method based on dual-comb interferometry

and a grating-corner-cube (GCC) combined sensor. The
GCC combined sensor, which is specifically designed for the
proposed implementation, consists of a two-dimensional trans-
mission grating and a corner cube. When an incident beam
passes through the GCC sensor, four first-order diffracted
beams symmetrically distributed around the zeroth-order dif-
fracted beam exit parallel to the incident beam. We convert
the position and orientation information into three-dimen-
sional phase spectra. Pitch and yaw angles can be accurately
obtained by resolving the precise phase spectra of the first-order
diffracted beams along the x and y axes. Moreover, the phase
spectra of the zeroth-order diffracted beam can be used to mea-
sure absolute distances. By combining dual-comb interferom-
etry with a diffracting corner cube, the proposed method
exhibits simultaneous precise measurement of angles and abso-
lute distances with large unambiguity range at a high refresh
rate, enabling operation over long stand-off distances. Such
an overall performance has potential applications in various sce-
narios including tight formation-flying satellites, spacecraft ren-
dezvous and docking, antenna orientation measurement,
lithography machines, and aircraft-manufacturing processes.

2. METHODS

A. Experimental Setup
Figure 1(a) depicts the experimental setup and principle of the
dual-comb spectroscopy resolved three-DOF measurement
method. A transmission grating is tightly attached to the front
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Fig. 1. (a) Schematic of the experimental setup. FC1–FC3, fiber collimator, the collimated beam diameter is ∼3 mm; FS, 1 × 3 fiber splitter; R,
reflection mirror; BS1–BS4, nonpolarizing beam splitter; C, corner cube; BPF1 and BPF2, band-pass filter, the bandwidth is 5 nm to avoid spectral
aliasing; LPF1 and LPF2, low-pass filter from 0 to f r2∕2; L1 and L2, focusing lens; PD1 and PD2, photodetector (model: 1811-FS, Newport).
Diffracted beams with various frequency modes are focused by the lens and then sampled by the PD. The f ceo of both OFCs are fully stabilized by
f − 2f interferometers (f ceo1 � f ceo2 � 10.56MHz). (b) The transmission grating is tightly attached to the front surface of the corner cube. The
zeroth-order diffracted beam, two first-order diffracted beams in the x direction, and two first-order diffracted beams in the y direction exit the GCC
sensor parallel to the incident beam after being twice diffracted by the grating and once reflected by the corner cube. The GCC sensor in y − z view is
also depicted. (c) Data processing in dual-comb interferometry. Two IGMs, IY�1 and IY −1, with a measurement period of 1∕Δf r . The amplitude
and phase spectra of the IGMs can be calculated by FFT.
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surface of the corner cube to form a GCC sensor. A laser pulse
train from Comb 1 (repetition frequency f r1 � 56.090MHz)
is incident on both the reference arm and the GCC sensor. The
measured beam is diffracted by the transmission grating, and
then the zeroth-order and �1st-order diffracted beams along
the x and y directions are reflected by the corner cube.
These five reflection beams are then diffracted by the transmis-
sion grating again. Obviously, as depicted in Fig. 1(b), their
opposite-order (for instance, the original order is �1st and
the opposite order is −1st) diffracted beams exit the GCC sen-
sor parallel to the incident beam. The pulse train from Comb 2
(repetition frequency f r2 � 56.091MHz), on the other hand,
is evenly divided into three sampling pulses by a 1 × 3 fiber
splitters, and then they interfere with pulse trains from three
paths. Here, the zeroth-order diffracted beam from the
GCC sensor and the reflected beam from the reference arm
can be utilized to measure the absolute distance along the
z-axis via the dual-comb ranging method [17]. In addition, the
two other pulse trains from Comb 2 interfere with the two
pulse trains in the x direction and two pulse trains in the y
direction from the GCC sensor, respectively. Through linear
optical sampling, the four pairs of interferograms (IGMs)
(IX�1, IX−1, IY�1, IY −1) are generated with a certain update
time T update � 1∕Δf r and finally sampled by two separate
photodetectors (PDs) in their corresponding directions. In
the frequency domain, it can be expressed as the multi-hetero-
dyne process between the longitudinal modes in Comb 1,
which can be expressed as f 1�i1� � i1f r1 � f ceo1, and the
longitudinal mode in Comb 2, which can be expressed as
f 2�i2� � i2f r2 � f ceo2, where f ceo represents the carrier-
envelope offset frequency. After low-pass filtering from 0 to
f r2∕2, a series of heterodyne signals f RF�k� � i1f r1 − i2f r2�
f ceo1 − f ceo2 in the radio frequency (RF) domain with spacing
Δf r can be obtained.

As depicted in Fig. 1(c), based on the dual-comb method,
the pitch angle (αx) can be calculated from the phase difference
ΔφRF�k� between IY�1 and IY −1 using a fast Fourier transform
(FFT). Here, only the y − z view is depicted in Fig. 1(a); the
yaw angle (αy) can also be obtained using the phase difference
between IX�1 and IX −1 in the x − z view. Compared to
the initial setup reported in the conference proceedings [36],
to achieve stable phase spectra, we use a free-running continu-
ous-wave (CW) laser with a frequency of ∼191.5003543 THz
(model: RIO0195, Rio, Inc.) as an optical intermediary to ob-
tain the beat signal between two combs and thus calculate the
envelope timing jitter and carrier phase noise of the IGMs.
Through a digital postcorrection, the frequency noise of all the
IGMs can be compensated [37]. Furthermore, to further de-
crease the effect of random noises, the corner cube (C) is used
to adjust the time delay between IY�1 and IY −1 and make them
approximately equal [38]. In the experiments, we use the multi-
pulse sampling technique to realize the multiplication of IGMs
[39]. The multiplication factor is set to 8, and thus the preci-
sion of both dφ/df and Δφc is increased by a factor ∼

ffiffiffi
8

p
.

B. Fabrication of the GCC Sensor
For the GCC sensor, limited by the maximum incident angle
of the corner cube, the grating period should be longer
than that of ordinary gratings. However, for the conventional

holographic exposure method, fabricating a grating with a long
period is difficult. Using a compact improved dual-beam expo-
sure system, we fabricated a two-dimensional grating with a
period (g) of 5 μm and an aperture of 50 mm. The diffraction
efficiency can reach 10%. Because of the small off-axis of the
pinholes, the symmetrical design of the system, and the use of
an aspherical lens as collimation lens, the interference aberra-
tion of this exposure system is very small, and thus it is able to
fabricate a grating with spacing error of only 0.03g. More de-
tails regarding the design and fabrication method of the grating
are provided in our previous work [40]. The self-designed gra-
ting is tightly attached to the front surface of the commercial
corner cube (model: PS976-C, Thorlabs, Inc.) constructed
using N-BK7 materials with a diameter of 50 mm to form
a GCC sensor.

C. Theoretical Models
According to the reflection characteristics of the corner cube,
the model of a GCC sensor is equivalent to a parallel grating
pair (G and G 0) as illustrated in Fig. 2(a). Here G 0 is the virtual
image of G. To measure the orientation of the combined sen-
sor, based on the right-hand rule, we establish the space coor-
dinate system with its origin at the intersection of the incident
beam and the grating. Two coordinate systems are involved in
this model: one is the world coordinate system, which remains
unchanged, and the other is the grating coordinate system,
where the x and y axes are along the two periodic directions
of the grating, respectively, and the z axis is along the normal
direction of the grating. In the initial state, these two coordinate
systems are completely coincident, and afterward, the grating
coordinate system will change with a three-DOF rotation. The
incident beam in the world coordinate system can be expressed
as �0, 0, 1�T . When the matrix that expresses the rotated coor-
dinate system of the z, x, and y axes is considered in a clockwise
direction, the rotation matrixes, relative to an original coordi-
nate, are as follows:

RZ �αz� �
"

cos αz sin αz 0
− sin αz cos αz 0

0 0 1

#
, (1)

RX �αx� �
2
4 1 0 0
0 cos αx sin αx
0 − sin αx cos αx

3
5, (2)

RY �αy� �
2
4 cos αy 0 − sin αy

0 1 0
sin αy 0 cos αy

3
5, (3)

where αx , αy, and αz represent the rotation angles in the x, y,
and z axes, respectively. Any rotation can be expressed as a com-
position of rotations about the three axes and thus can be
represented by a 3 × 3 matrix operating on a vector:

R � RY RXRZ : (4)

Thus, after three-DOF rotation, the incident beam in the
grating coordinate system can be expressed as �− cos αx sin αy,
sin αx , cos αx cos αy �T . As Fig. 2(a) depicts, the unit vector of
the (p, q)-order diffracted beam is kpq . In the grating coordinate
system, kpq � �sin θ cos γ, sin θ sin γ, cos θ�T . Here kpq
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can be expressed using the unit vector of the incident beam
according to the diffraction equation

n 0
i sin θ cos γ � −ni cos αx sin αy � p

λi
g
, (5)

n 0
i sin θ sin γ � ni sin αx � q

λi
g
, (6)

where g denotes the grating period, n 0
i denotes the refractive

index of the ith longitudinal mode in the corner cube, ni de-
notes the phase refractive index of the ith longitudinal mode in
air, and λi denotes the wavelength of the ith longitudinal mode.
Before and after rotation, the phase change Δφi�p,q� can be
obtained using the optical path difference ΔLi�p,q�, and the
grating translations Δxi�p,q� and Δyi�p,q� along the two periodic
directions:

Δφi�p,q� �
2π

λi
· ΔLi�p,q� � p

2π

g
Δxi�p,q� � q

2π

g
Δyi�p,q�: (7)

Here we use the phase difference of �1st-order and −1st-order
diffracted beams to improve the sensitivity and eliminate the
crosstalk error of axial distance. The corresponding phase dif-
ference of the ith longitudinal mode in the y and x directions
can be obtained using

Δφi�0,�1� � Δφi�0,−1� − Δφi�0,�1�, (8)

Δφi��1,0� � Δφi�−1,0� − Δφi��1,0�: (9)

First, numerical simulations of the relation between Δφi�0,�1�,
Δφi��1,0� and αx , αy in the range of �1500 arcsec were con-
ducted, respectively. Here f i is set to 191.208 THz, which is
equal to the carrier frequency of Comb 1. As depicted in
Fig. 2(b), Δφ�0,�1� and Δφ��1,0� were observed to be relatively
independent and affected only by αx and αy, respectively. The
crosstalk error was lower than 0.02 arcsec within a range of
�1500 arcsec. To simplify the theoretical model, the crosstalk
error can be ignored in the case of a small rotation; thus, two-
dimensional rotation can be regarded as two independent one-
dimensional rotations. We can measure the pitch angle αx by
the phase changes of (0, �1)- and (0, −1)-order diffracted
beams. Similarly, the yaw angle αy can be obtained using
the phase changes of (�1, 0)- and (−1, 0)-order diffracted
beams. Because the transmission grating has an identical gra-
ting period in the x and y directions, the theoretical models of
αx and αy are also equivalent.

Here we take αx as an example. Figure 2(c) depicts the par-
allel grating pair in the y − z view. We set rotation point at po-
sition O for simplicity; that is, the intersection of the incident
beam and grating is assumed to be the turning point. The blue

Fig. 2. Theoretical model of the present method. (a) Schematic diagram of the GCC sensor in the space coordinate system. (b) Simulated
Δφ�0,�1� versus αx and αy . Simulated Δφ��1,0� versus αx and αy . The grating pair spacing l � 97.46 mm, g � 5 μm, n 0

i � 1.5, ni � 1, and
f i � 191.208 THz. (c) Simplified theoretical model. f i denotes the frequency of the ith longitudinal mode. ξi�0,�1� and ξ 0i�0,�1� are the diffraction
angles of the (0, �1)-order diffracted beam before and after rotation, respectively. (d) Principle of angle measurement method associated with the
near-infrared (NIR) frequency comb. ξi denotes the diffraction angle of the ith longitudinal mode, f i . T r1 denotes the repetition period of Comb 1.
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lines represent the initial state, and the long sides G and G 0

represent a pair of parallel gratings. In this case, the laser beam
is normally incident onto the transmission grating at point O.
The (0,�1)-order diffracted beam and (0, −1)-order diffracted
beam are then diffracted by the grating at points A and B, re-
spectively. We rotate the grating pair from 0 to αx , as illustrated
in the yellow lines. The position of the first diffraction remains
unchanged at point O. Because of the change in diffraction an-
gle, the (0, �1)-order diffracted beam and (0, −1)-order dif-
fracted beam are then diffracted by the grating at points A 0

and B 0, respectively. Obviously, their opposite-order diffracted
beams exit parallel to the incident beam. Before and after
rotation, the phase change Δφi�0,�1� can be obtained using
the optical path difference ΔLi�0,�1� and the grating movement
Δyi�0,�1� along the periodic directions of the second
grating.

When αx is a small angle, the phase difference Δφi�0,�1� is
considered. Equation (8) can be approximated as a linear
equation

Δφi�0,�1� �
2π

λi
· nil tan ξi�0,�1� · ax −

2π

λi
· nil tan ξi�0,−1� · ax ,

(10)

where l denotes the grating pair spacing, and ξi�0,�1� and ξi�0,−1�
are the diffracted angles of the (0, �1)- and (0, −1)-order dif-
fracted beams under normal incidence. Considering the dif-
fracted equation n 0

i sin�ξi�0,�1�� � �λi∕d , the relationship
between the angle of rotation αx and the phase change
Δφi�0,�1� is given as follows:

αx �
n 0
i g

4πnil

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
c

n 0
i gf i

�
2

s
· Δφi�0,�1�, (11)

where c denotes the speed of light in a vacuum. Therefore, the
relationship between the rotation angle αx and carrier phase
difference Δφc�0,�1� is given:

αx �
n 0
cg

4πncl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
c

n 0
cgfc

�
2

s
· Δφc�0,�1�, (12)

where n 0
c denotes the refractive index of the center wavelength

in the corner cube and nc denotes phase refractive index of the
center wavelength in air. As Eq. (12) depicts, because the linear
slope is constant, αx can be easily obtained through the
calculation of the carrier phase difference. However, the unam-
biguity range of interferometric measurement is only 2π. As
Fig. 2(d) depicts, the different longitudinal modes of the inci-
dent beam are spatially separated into a group of first-order dif-
fracted beams with different diffraction angles depending on
their optical frequencies. When the angle of the target sensor
changes, different longitudinal modes will suffer different phase
changes. Therefore, a simple linear fit between Δφ�0,�1� and f
can give an expanded unambiguity range. The phase-frequency
slope dΔφ�0,�1�∕df can be approximately expressed using the
partial differential of Eq. (11) at the carrier frequency f c :

αx � −
1

4πnc l
g ·

h
n 0
c −

�
c
fc g

�
2
i
−3∕2

·
�
n 0
c
dn 0
df � c2

g2f 3
c

� ·
dΔφ�0,�1�

df
:

(13)
Here the approximate errors of Eqs. (12) and (13) are better

than 0.007 arcsec and 0.06 arcsec within ±1500 arcsec, respec-
tively, which are much lower than the errors caused by phase
noise and phase-frequency slope noise in dual-comb system.
Therefore, using the phase frequency slope, we can measure
the value of αx roughly. Through the use of the carrier phase
difference, a more precise αx can be obtained. In particular, all
parameters in Eqs. (12) and (13) can be explicitly calculated.
Among them, n 0

i and dn 0∕df are calculated using the Sellmeier
equation for N-BK7 materials. ni is calculated using the Edlén
equation. g is measured via the optical diffraction method. l
denotes the grating pair spacing, which is equal to twice the
distance between the front surface of the grating and the vertex
of the corner cube and can be measured via the dual comb rang-
ing method. f i can be calculated based on the repetition fre-
quency, the carrier-envelope offset frequency, and the serial
number of the longitudinal mode. Here the repetition fre-
quency and the carrier-envelope offset frequency are parameters
of the OFC, traced to the atomic clock, and can be obtained
accurately. Therefore, the angle results can be obtained directly
through the phase spectra. It should be noted that the above
analysis is also suitable for αy.

Here, if the rotation point is not at position O, there is an
additional phase shift caused by the movement of grating G.
However, this additional phase shift will be compensated by
the phase shift of grating G 0, such that the phase changes of
the exit beams are sensitive only to the angle variation. As a
result, the precisions of αx and αy can both reach subarcsecond
level with the reaction time, at millisecond scale, by the phase
spectra of the diffracted beams in the y direction and x direc-
tion, respectively.

3. RESULTS

A. Stability Tests
To test the measurement performance, the stability results were
first obtained at a stand-off distance of ∼1 m. Figure 3 presents
the angular precision (Allan deviation) and ranging precision
of both the time-of-flight (TOF) method, by the use of
dφ∕df , and the carrier-wave interferometric (CWI) method,
by the use of Δφc versus different averaging time. Here the
precisions of αx and αy are both determined mainly by the
phase noise caused by the instability of cavity length of the laser
source, and they are nearly the same. Therefore, only the pre-
cision of αx was analyzed. In the experiments, the grating
period g � 5.0342 μm, and the carrier frequency fc �
191.20815 THz. n 0

c � 1.5004274 and dn 0∕df �
1.0331 × 10−16. nc � 1.0002577. The grating pair spacing
l � 97.4607 mm. Therefore, we can obtain that αx ≈
6.03154 × 10−6 × Δφc�0,�1� (CWI method), in which the unit
of αx is radians. The equation can be further simplified to
αx ≈ 1.2441 × Δφc�0,�1�, in which the unit of αx is arcseconds.
Similarly, we also can obtain that αx ≈ −4.0467 × 1015×
dΔφ�0,�1�∕df (TOF method), in which the unit of αx is
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arcseconds. As depicted in Fig. 3(a), the precision of the TOF
method is roughly δTOF ≈ 80.94 arcsec × �T update∕T �1∕2, which
is caused by approximately 2 × 10−14 �T update∕T �1∕2 instability
of dφ∕df . The precision of the CWI method is roughly
δCWI ≈ 0.088 arcsec × �T update∕T �1∕2, corresponding to the
0.07 rad × �T update∕T �1∕2 precision of the carrier phase differ-
ence, reaching 0.0094 arcsec at 100 ms and 0.0041 arcsec when
it continues to average 0.5 s. It should be noted that, with
560 ms averaging time, the result of the TOF method is stable
enough to determine the integer Nc of the unambiguity angle,
and thus an angle measurement with large unambiguity range
can be achieved.

For absolute distance, as Fig. 3(b) depicts, the TOF
ranging precision and CWI ranging precision in the dual-comb
ranging method are 2.2 μm × �T update∕T �1∕2 and
13.5 nm × �T update∕T �1∕2, respectively. The TOF result is suf-
ficiently stable to link to the CWI method after 40 ms averag-
ing period. In this case, meter-scale measurement range and
nanometer-scale precision can be achieved.

B. Comparison Experiments
Moreover, we made a linear comparison with a commercial au-
tocollimator (Collapex 200, AcroBeam, resolution 0.01 arcsec,
0.3 arcsec accuracy within�600 arcsec). The GCC sensor and

the plane mirror of the autocollimator were mounted on the
two-axis precision rotary stage for investigating the linear
and random errors of the proposed method. The comparison
range for both directions was 200 arcsec with a step of 10 arcsec.
The pitch and yaw angles of the rotary stage were detected si-
multaneously using the proposed method and the commercial
autocollimator. For each position, the data were recorded for
1 s, and the average results were used for the comparison of αx
and αy, respectively. During the comparison, the environmental
parameters were recorded to correct for the effect of the refrac-
tive index of air (nc). As depicted in Figs. 4(a) and 4(b), the
results of the present system are in good accordance with the
“standard results” of the commercial autocollimator. Through
the application of linear fitting, the slopes and the correlation
coefficients (R2) in the x and y directions are determined to be
1.0012 and 0.9999987, and 0.9857 and 0.9999989, respec-
tively. The linear errors are primarily caused by spacing errors
of the grating, the grating profile error, the nonflatness of the
substrate, the surface error of the corner cube, and the misalign-
ment of the measurement axes used in the proposed method
and the reference autocollimator. Further, the random errors
of the proposed method were also evaluated. As depicted in
Fig. 4(a), the comparison residuals of the pitch angle αx range

0.001

0.01

0.1

1

10

100

A
lla

n 
de

vi
at

io
n 

(a
rc

se
c)

Averaging time (s)

Half unambiguity angle (3.91")

 TOF method    
 CWI method

0.001 0.01 0.1 1 0.001 0.01 0.1 1

1E-9

1E-8

1E-7

1E-6

A
lla

n 
de

vi
at

io
n 

(m
)

 TOF method    
 CWI method

Averaging time (s)

λc/4

0.5

(b) (a) 

Fig. 3. Precision (Allan deviation) versus averaging time, computed from 2 s length data. Both the TOF and CWI measurement results of angle
and absolute distance are given. The half-unambiguity angle is 3.91 arcsec [calculated by 1.2441 × π from Eq. (12)]. The half-unambiguity distance
is a quarter-carrier wavelength (λc∕4).

 Angle data measured
 Linear fitting
 Residuals

0 40 80 120 160 200

0

40

80

120

160

200

 y = 0.9857·x   

y = 0.12"

αy , reference autocollimator (arcsec)

α y
 , 

pr
op

os
ed

 m
et

ho
d 

(a
rc

se
c)

–0.6

–0.3

0.0

0.3

0.6

R
es

id
ua

ls
 (

ar
cs

ec
) 

 Angle data measured 
 Linear fitting 
 Residuals

0 40 80 120 160 200

0

40

80

120

160

200

 y = 1.0012·x   

x = 0.13"

αx , reference autocollimator (arcsec)

α x ,
 p

ro
po

se
d 

m
et

ho
d 

(a
rc

se
c)

–0.6

–0.3

0.0

0.3

0.6

R
es

id
ua

ls
 (

ar
cs

ec
) 

(b)(a)
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obtained via the proposed method versus those obtained via the commercial autocollimator.
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between −0.19 and 0.24 arcsec, with a standard deviation of
∼0.13 arcsec. As depicted in Fig. 4(b), the comparison resid-
uals of the yaw angle αy range between −0.22 and 0.19 arcsec,
with a standard deviation of ∼0.12 arcsec.

C. Dynamic and Resolution Measurements
Implementation
To further verify the dynamic performance and resolution of
the proposed method, both the distances and the angles mea-
sured from a stand-off distance of 1.12 m and a stand-off dis-
tance of 11.35 m were given. The GCC sensor was mounted on
a six-axis piezo stage (model P-562, PI, Inc.) with capacitive
sensors (angle resolution: 0.02 arcsec, distance resolution:
1 nm) in closed-loop mode. At a stand-off distance of
∼1.12 m, the GCC sensor was made to undergo continuous
linear and rotational motions under a 10 Hz modulation fre-
quency with modulation amplitudes of 50 nm and 0.3 arcsec,
respectively. Corresponding to each modulation, the data were
recorded for 1 s, and the distance (D) and tilt angle (αy) were
simultaneously measured via the proposed method and the
capacitive sensor installed inside the piezo stage. As depicted
in Figs. 5(a) and 5(b), the results obtained via the proposed
method correspond well to the results obtained via the capaci-
tive sensor, and continuous sinusoidal motions of 50 nm
and 0.3 arcsec were clearly observed and reconstructed. As
the minimum reaction time of the proposed method is known
to be 1∕Δf r , under relatively low-speed measurement condi-
tions, coherent averaging can be used to further reduce the ran-
dom noise. It is evident that after averaging over 5 ms, the
proposed method was able to distinguish the continuous sinus-

oidal motions more clearly. The angle and distance results mea-
sured from a relatively long stand-off distance of 11.35 m were
both given. The GCC sensor was made to undergo continuous
linear and rotational motions under a 25 Hz modulation fre-
quency with modulation amplitudes of 1 μm and 0.4 arcsec,
respectively. As depicted in Fig. 5(c), the ranging resolution was
reduced to ∼1 μm due to environmental disturbances over
long distances. In this case, the angular resolution of 0.4 arcsec
could still be attained because of the approximate common op-
tical path of �1st-order diffracted beams.

4. DISCUSSION AND CONCLUSION

As mentioned previously, the linear errors of αx and αy exhibit a
slight difference, some of which are induced by different grating
spacing errors in the two dimensions. When an incident beam
passes through the GCC sensor, the first and second diffraction
sites at the transmission grating are different. Because of the
spacing errors, the grating periods of the two diffraction sites
are also different, which affects the angle of diffraction and in-
duces the phase change. If only the effect of the spacing error on
the linear errors is considered, the grating period difference be-
tween the x and y directions amounts to ∼0.0277g. Here we
primarily consider low-frequency errors induced by the grating
because the diameter of the input beam is ∼3 mm, which cor-
responds to ∼600 grating lines. Therefore, the influence of
high-frequency spacing errors can be considered to be negli-
gible. Considering that the diffracted beams are the transmis-
sion orders of the two-dimensional grating, the phase of
diffracted beams will be affected by the grating profile error,
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the nonflatness of the substrate, and the surface error of the
corner cube. Due to the different paths of different orders’ dif-
fracted beams inside the GCC sensor, the effects of the afore-
mentioned errors for diffracted beams in the x and y directions
are also different. Moreover, the misalignment of the measure-
ment axis of the proposed method and the reference autocolli-
mator caused by orthogonality errors of the grating lines on the
x and y axes also introduces different linear errors. For practical
application, the linear errors caused by the fabrication of the
GCC sensor can be compensated by calibration. Further reduc-
tion of fabrication error of the GCC sensor will also be inves-
tigated in a future work.

In a dual-comb system, the minimum reaction time is
known to be 1∕Δf r . High-repetition-frequency systems
[gigahertz (GHz) level or higher] exhibit large values of Δf r
(approximately 10–100 MHz), inducing reaction times be-
tween 10 and 100 ns [14]. To further improve the dynamic
performance, high-repetition-frequency combs can be utilized,
which also decrease phase noise and timing jitter, thereby im-
proving the precision of both the TOF and CWI methods.

To achieve the simultaneous measurement of distance and
two-dimensional angles, the five parallel measurement beams
are required to be separated in space. Therefore, the maximum
stand-off distances of the proposed method are mainly limited
by the diameter of the collimated beam before passing the GCC
sensor. Based on the divergence angle of the commercial fiber
collimator, the diameter of the collimated beam is about a few
millimeters to tens of millimeters in the distance from tens to
hundreds of meters. For a longer stand-off distance (a few kilo-
meters and longer), the proposed method is possible to be real-
ized by increasing the size of the target. To further increase the
maximum stand-off distance, the processing of the large-scale
grating and the corner cube will also be investigated.

In conclusion, in this study, we have proposed a three-DOF
measurement method. Using the dual-comb technique and a
self-designed GCC combined sensor, the absolute distance,
pitch, and yaw of a target can be determined based on the phase
spectra of corresponding diffracted beams. The proposed
method was verified to be capable of dynamically measuring
distances and angles with high precision and resolution.
Further, it can be applied from long stand-off distances because
all the measurement beams emitted by the GCC sensor are par-
allel to the incident beam, irrespective of the orientation or
translation of the target. By using a compact target, the
proposed method can realize subarcsecond-scale precision in
pitch and yaw angle measurements and nanometer-scale preci-
sion in distance measurements, with millisecond-scale reaction
times, large unambiguity ranges, and long stand-off distances.
Such an overall performance brings great benefits to various
tasks in optical metrology, such as space missions and precise
manufacturing.
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