• Chinese Journal of Lasers
  • Vol. 48, Issue 13, 1301001 (2021)
Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, and Suchun Feng*
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/CJL202148.1301001 Cite this Article Set citation alerts
    Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, Suchun Feng. Design of Flat Optical Frequency Comb Based on Lithium Niobate Optical Waveguide[J]. Chinese Journal of Lasers, 2021, 48(13): 1301001 Copy Citation Text show less
    References

    [1] Diddams S A, Vahala K, Udem T. Optical frequency combs: coherently uniting the electromagnetic spectrum[J]. Science, 369, eaay3676(2020).

    [2] Bartels A, Heinecke D, Diddams S A. Passively mode-locked 10 GHz femtosecond Ti: sapphire laser[J]. Optics Letters, 33, 1905-1907(2008).

    [3] Duan G H, Shen A, Akrout A et al. High performance InP-based quantum dash semiconductor mode-locked lasers for optical communications[J]. Bell Labs Technical Journal, 14, 63-84(2009). http://dl.acm.org/citation.cfm?id=1658605

    [4] Lo M C, Guzmán R, Ali M et al. 1.8-THz-wide optical frequency comb emitted from monolithic passively mode-locked semiconductor quantum-well laser[J]. Optics Letters, 42, 3872-3875(2017). http://www.ncbi.nlm.nih.gov/pubmed/28957148

    [5] Imran M, Anandarajah P M, Kaszubowska-Anandarajah A et al. A survey of optical carrier generation techniques for terabit capacity elastic optical networks[J]. IEEE Communications Surveys & Tutorials, 20, 211-263(2018). http://ieeexplore.ieee.org/document/8114183/references

    [6] Beha K, Cole D C, Del’Haye P et al. Electronic synthesis of light[J]. Optica, 4, 406-411(2017).

    [7] Xie H L, Jia K X, Chen J W et al. Tunable optical frequency comb based on coupled radio frequency signal and single Mach-Zehnder modulator[J]. Chinese Journal of Lasers, 47, 0706002(2020).

    [8] Dai J, Dai Y T, Yin F F et al. Compact optoelectronic oscillator based on a Fabry-Perot resonant electro-optic modulator[J]. Chinese Optics Letters, 14, 110701(2016). http://www.cqvip.com/QK/85954X/201611/670899498.html

    [9] Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019). http://www.ncbi.nlm.nih.gov/pubmed/30858615

    [10] Kippenberg T J, Gaeta A L, Lipson M et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).

    [11] Fülöp A, Mazur M, Lorences-Riesgo A et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators[J]. Nature Communications, 9, 1598(2018). http://europepmc.org/abstract/MED/29686226

    [12] Huang S W, Liu H, Yang J et al. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression[J]. Scientific Reports, 6, 26255(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4867630/

    [13] Hu Y J, Wang S X, Wang D W et al. Research progress of mid-infrared micro-ring resonator and its application[J]. Laser & Optoelectronics Progress, 57, 230004(2020).

    [14] Taccheo S, Ennser K, Forin D et al. Supercontinuum-based devices for telecom applications[C]. //2006 International Conference on Transparent Optical Networks, June 18-22, 2006, Nottingham, UK., 32-36(2006).

    [15] Finot C, Kibler B, Provost L et al. Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers[J]. Journal of the Optical Society of America B, 25, 1938-1948(2008). http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-11-1938

    [16] Heidt A M, Feehan J S, Price J H V et al. Limits of coherent supercontinuum generation in normal dispersion fibers[J]. Journal of the Optical Society of America B, 34, 764-775(2017).

    [17] Wu R, Torres-Company V, Leaird D E et al. Supercontinuum-based 10-GHz flat-topped optical frequency comb generation[J]. Optics Express, 21, 6045-6052(2013). http://www.ncbi.nlm.nih.gov/pubmed/23482172

    [18] Ataie V, Myslivets E, Kuo B P P et al. Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping[J]. Journal of Lightwave Technology, 32, 840-846(2014).

    [19] Yu S Y, Bao F D, Hu H. Broadband optical frequency comb generation with flexible frequency spacing and center wavelength[J]. IEEE Photonics Journal, 10, 1-7(2018). http://ieeexplore.ieee.org/document/8354784

    [20] Myslivets E, Kuo B P P, Alic N et al. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion[J]. Optics Express, 20, 3331-3344(2012).

    [21] Li Q, Huang Y L, Jia Z X et al. Design of fluorotellurite microstructured fibers with near-zero-flattened dispersion profiles for optical-frequency comb generation[J]. Journal of Lightwave Technology, 36, 2211-2215(2018). http://ieeexplore.ieee.org/document/8305453

    [22] Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs[J]. Nature Photonics, 13, 158-169(2019). http://www.nature.com/articles/s41566-019-0358-x

    [23] Duchesne D, Peccianti M, Lamont M R E et al. Supercontinuum generation in a high index doped silica glass spiral waveguide[J]. Optics Express, 18, 923-930(2010).

    [24] Ji X C, Barbosa F A S, Roberts S P et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold[J]. Optica, 4, 619-624(2017).

    [25] Du Q Y, Luo Z Q, Zhong H K et al. Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide[J]. Photonics Research, 6, 506-510(2018).

    [26] Tan D T H, Ooi K J A, Ng D K T. Nonlinear optics on silicon-rich nitride: a high nonlinear figure of merit CMOS platform[J]. Photonics Research, 6, B50-B66(2018). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=GZXJ201805013

    [27] Liu X W, Sun C Z, Xiong B et al. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs[J]. ACS Photonics, 5, 1943-1950(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.7b01254

    [28] Wilson D J, Schneider K, Hönl S et al. Integrated gallium phosphide nonlinear photonics[J]. Nature Photonics, 14, 57-62(2020). http://arxiv.org/abs/2010.16149

    [29] Kuyken B, Billet M, Leo F et al. Octave-spanning coherent supercontinuum generation in an AlGaAs-on-insulator waveguide[J]. Optics Letters, 45, 603-606(2020). http://www.researchgate.net/publication/338453850_Octave-spanning_coherent_supercontinuum_generation_in_an_AlGaAs-on-insulator_waveguide/download

    [30] Wu C J, Feng S C. Generation of high repetition rate broadband flat coherent optical frequency comb based on tantalum pentoxide integrated nonlinear optical waveguide[J]. Acta Photonica Sinica, 48, 1048003(2019).

    [31] Lamee K F, Carlson D R, Newman Z L et al. Nanophotonic tantala waveguides for supercontinuum generation pumped at 1560 nm[J]. Optics Letters, 45, 4192-4195(2020).

    [32] Yu M J, Desiatov B, Okawachi Y et al. Coherent two-octave-spanning supercontinuum generation in lithium-niobate waveguides[J]. Optics Letters, 44, 1222-1225(2019). http://arxiv.org/abs/1901.11101

    [33] Yan P P, Gong H, Ye F et al. All polarization-maintaining erbium-doped fiber based optical comb[J]. Chinese Journal of Lasers, 47, 0115001(2020).

    [34] Zhou J X, Gao R H, Lin J T et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 37, 084201(2020).

    [35] LLuke K, Kharel P, Reimer C et al. Wafer-scale low-loss lithium niobate photonic integrated circuits[J]. Optics Express, 28, 24452-24458(2020). http://arxiv.org/abs/2007.06498

    [36] Zelmon D E, Small D L, Jundt D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate[J]. Journal of the Optical Society of America B, 14, 3319-3322(1997).

    [37] Malitson I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 55, 1205-1209(1965). http://www.opticsinfobase.org/josa/abstract.cfm?id=52806

    [38] Dudley J M, Taylor J R. Supercontinuum generation in optical fibers[M](2009).

    [39] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135(2006). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4528738

    [40] Fatome J, Finot C, Millot G et al. Observation of optical undular bores in multiple four-wave mixing[J]. Physical Review X, 4, 021022(2014). http://adsabs.harvard.edu/abs/2014PhRvX...4b1022F

    [41] Agrawal G. Nonlinear fiber optics[M]. 5th ed(2013).

    [42] Yang X, Richardson D J, Petropoulos P. Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping[J]. Journal of Lightwave Technology, 30, 1971-1977(2012).

    Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, Suchun Feng. Design of Flat Optical Frequency Comb Based on Lithium Niobate Optical Waveguide[J]. Chinese Journal of Lasers, 2021, 48(13): 1301001
    Download Citation