• Chinese Journal of Lasers
  • Vol. 48, Issue 13, 1301001 (2021)
Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, and Suchun Feng*
Author Affiliations
  • Key Laboratory of All Optical Network and Advanced Telecommunication Network, Ministry of Education, Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3788/CJL202148.1301001 Cite this Article Set citation alerts
    Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, Suchun Feng. Design of Flat Optical Frequency Comb Based on Lithium Niobate Optical Waveguide[J]. Chinese Journal of Lasers, 2021, 48(13): 1301001 Copy Citation Text show less
    LiNbO3 waveguide structure and dispersion engineering of TE0 fundamental mode. (a) LiNbO3 waveguide structure; (b) Aeff and γ of TE0 mode; (c) simulation on GVD versus W; (d) simulation on GVD versus H; (e) simulation on GVD versus θ; (f) simulation on GVD versus D
    Fig. 1. LiNbO3 waveguide structure and dispersion engineering of TE0 fundamental mode. (a) LiNbO3 waveguide structure; (b) Aeff and γ of TE0 mode; (c) simulation on GVD versus W; (d) simulation on GVD versus H; (e) simulation on GVD versus θ; (f) simulation on GVD versus D
    Structural diagram of high repetition rate flat optical frequency comb generation
    Fig. 2. Structural diagram of high repetition rate flat optical frequency comb generation
    Simulation results of initial chirp-free hyperbolic secant pulse propagating in nonlinear LiNbO3 waveguide with normal dispersion. Evolution of pulse envelopes in (a1) time and (a2) frequency domains; pulse envelopes in (b1) time and (b2) frequency domains after pulse propagation of 3.6 m
    Fig. 3. Simulation results of initial chirp-free hyperbolic secant pulse propagating in nonlinear LiNbO3 waveguide with normal dispersion. Evolution of pulse envelopes in (a1) time and (a2) frequency domains; pulse envelopes in (b1) time and (b2) frequency domains after pulse propagation of 3.6 m
    Evolution of periodic pulse propagating in nonlinear LiNbO3 waveguide with normal dispersion.(a) Two-dimensional evolution process; (b) 3D evolution process
    Fig. 4. Evolution of periodic pulse propagating in nonlinear LiNbO3 waveguide with normal dispersion.(a) Two-dimensional evolution process; (b) 3D evolution process
    Spectrograms of initial chirp-free hyperbolic secant pulse at various propagation distances. (a) 0; (b) 1.5 m;(c) 3.6 m; (d) 6.0 m
    Fig. 5. Spectrograms of initial chirp-free hyperbolic secant pulse at various propagation distances. (a) 0; (b) 1.5 m;(c) 3.6 m; (d) 6.0 m
    Spectrograms of initial chirp-free Gaussian pulse at various propagation distances. (a) 0; (b) 1.2 m;(c) 2.0 m; (d) 4.2 m
    Fig. 6. Spectrograms of initial chirp-free Gaussian pulse at various propagation distances. (a) 0; (b) 1.2 m;(c) 2.0 m; (d) 4.2 m
    Spectrograms of initial chirp-free third-order super-Gaussian pulse at various propagation distances. (a) 0;(b) 0.6 m; (c) 1.2 m; (d) 2.4 m
    Fig. 7. Spectrograms of initial chirp-free third-order super-Gaussian pulse at various propagation distances. (a) 0;(b) 0.6 m; (c) 1.2 m; (d) 2.4 m
    Final broadening spectra and pulse envelopes in time domain after propagation through 3.6 m long waveguide when only one parameter is changed and the other parameters are fixed. (a) Only β2 changes; (b) only P0 changes; (c) only T0 changes; (d) only β3 changes; (e) only C changes; (f) only α changes; (g) only input pulse envelope changes
    Fig. 8. Final broadening spectra and pulse envelopes in time domain after propagation through 3.6 m long waveguide when only one parameter is changed and the other parameters are fixed. (a) Only β2 changes; (b) only P0 changes; (c) only T0 changes; (d) only β3 changes; (e) only C changes; (f) only α changes; (g) only input pulse envelope changes
    Coherence of optical frequency comb generated by hyperbolic secant pulse propagating in 3.6 m long LiNbO3 waveguide
    Fig. 9. Coherence of optical frequency comb generated by hyperbolic secant pulse propagating in 3.6 m long LiNbO3 waveguide
    Parameterβ2 /(ps2·km-1)β3 /(ps3·km-1)β4 /(ps4·km-1)γ /(W-1·m-1)P0 /WT0 /psα /(dB·m-1)
    Value47.10.024710.0016370.5405473011
    Table 1. Parameters used in simulation
    Yu Liu, Yi Deng, Hang Wei, Chunjiang Wu, Suchun Feng. Design of Flat Optical Frequency Comb Based on Lithium Niobate Optical Waveguide[J]. Chinese Journal of Lasers, 2021, 48(13): 1301001
    Download Citation