• Photonics Research
  • Vol. 11, Issue 3, 476 (2023)
Xiaoxian He1, Xiangru Wang1、*, Yulin Zhao2, Rusheng Zhuo1, and Feng Liang2
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
  • 2School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.1364/PRJ.482956 Cite this Article Set citation alerts
    Xiaoxian He, Xiangru Wang, Yulin Zhao, Rusheng Zhuo, Feng Liang. Field programmable topological edge array[J]. Photonics Research, 2023, 11(3): 476 Copy Citation Text show less
    References

    [1] N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett., 27, 1592-1594(2002).

    [2] Z. Yu, Z. Wang, S. Fan. One-way total reflection with one-dimensional magneto-optical photonic crystals. Appl. Phys. Lett., 90, 426(2007).

    [3] A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, S. Anand. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Phys. Rev. Lett., 93, 073902(2004).

    [4] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C. M. Soukoulis. Negative refraction by photonic crystals. Nature, 423, 604-605(2003).

    [5] C. Chen, A. Sharkawy, D. Pustai, S. Shi, D. Prather. Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides. Opt Express, 11, 3153-3159(2003).

    [6] S. G. Lee, S. S. Oh, J. E. Kim, H. Y. Park, C. S. Kee. Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals. Appl. Phys. Lett., 87, 181106(2005).

    [7] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [8] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, B. Kante. Lasing action from photonic bound states in continuum. Nature, 541, 196-199(2017).

    [9] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [10] Z. Bo, H. Zhong, Y. Ke, X. Qin, A. A. Sukhorukov, C. Lee, Y. S. Kivshar. Topological Floquet edge states in periodically curved waveguides. Phys. Rev. A, 98, 013855(2018).

    [11] X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, J. W. Dong. A silicon-on-insulator slab for topological valley transport. Nat Commun, 10, 1-9(2019).

    [12] X. D. Chen, W. M. Deng, F. L. Shi, F. L. Zhao, J. W. Dong. Direct observation of corner states in second-order topological photonic crystal slabs. Phys. Rev. Lett., 122, 233902(2019).

    [13] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, G. Bahl. Demonstration of a quantized microwave quadrupole insulator with topologically protected corner states. Nature, 555, 346-350(2017).

    [14] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [15] X. Wu, Y. Meng, J. Tian, Y. Huang, H. Xiang, D. Han, W. Wen. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals. Nat Commun, 8, 1-9(2017).

    [16] J. W. Dong, X. D. Chen, H. Zhu, Y. Wang, X. Zhang. Valley photonic crystals for control of spin and topology. Nat. Mater., 16, 298-302(2017).

    [17] T. Ma, G. Shvets. All-Si valley-Hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [18] F. Gao, H. Xue, Z. Yang, K. Lai, Y. Yu, X. Lin, Y. Chong, G. Shvets, B. Zhang. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys., 14, 140-144(2018).

    [19] H. Xue, Y. Yang, B. Zhang. Topological valley photonics: physics and device applications. Photon. Res., 2, 2100013(2021).

    [20] J. W. You, Q. Ma, Z. Lan, Q. Xiao, N. C. Panoiu, T. J. Cui. Reprogrammable plasmonic topological insulators with ultrafast control. Nat. Commun., 12, 1-7(2021).

    [21] J. P. Xia, D. Jia, H. X. Sun, S. Q. Yuan, Y. Ge, Q. R. Si, X. J. Liu. Programmable coding acoustic topological insulator. Adv. Mater., 30, 1805002(2018).

    [22] C. Li, X. Hu, W. Gao, Y. Ao, S. Chu, H. Yang, Q. Gong. Thermo‐optical tunable ultracompact chip‐integrated 1D photonic topological insulator. Adv. Opt. Mater., 6, 1701071(2018).

    [23] D. A. Dobrykh, A. V. Yulin, A. P. Slobozhanyuk, A. N. Poddubny, Y. S. Kivshar. Nonlinear control of electromagnetic topological edge states. Phys. Rev. Lett., 121, 163901(2018).

    [24] M. I. Shalaev, W. Walasik, N. M. Litchinitser. Optically tunable topological photonic crystal. Optica, 6, 839-844(2019).

    [25] M. I. Shalaev, S. Desnavi, W. Walasik, N. M. Litchinitser. Reconfigurable topological photonic crystal. New J. Phys., 20, 023040(2017).

    [26] X. He, X. Wang, L. Wu, X. Liu, J. Cao. Aperture scalable liquid crystal optically duplicated array of phased array. Opt. Commun., 451, 174-180(2019).

    [27] P. Chen, Z. X. Shen, C. T. Xu, Y. H. Zhang, S. J. Ge, L. L. Ma, W. Hu, Y. Q. Lu. Simultaneous realization of dynamic and hybrid multiplexed holography via light‐activated chiral superstructures. Laser Photon. Rev., 16, 2200011(2022).

    [28] S. T. Wu, A. Y. G. Fuh, S. J. Ho, M. S. Li. Bichromatic tuning of reflection bands in integrated CLC reflectors for optical switches, gates, and logic. Appl. Phys. B, 118, 379-385(2015).

    [29] Y. Wang, W. Zhang, X. Zhang. Tunable topological valley transport in two-dimensional photonic crystals. New J. Phys., 21, 093020(2019).

    [30] Y. Liu, J. Wang, D. Yang, Y. Wang, X. Zhang, F. Hassan, Y. Li, X. Zhang, J. Xu. Plasmon-induced transparency in a reconfigurable composite valley photonic crystal. Opt. Express, 30, 4381-4391(2022).

    [31] Y. Zhao, F. Liang, X. Wang, D. Zhao, B. Z. Wang. Tunable and programmable topological valley transport in photonic crystals with liquid crystals. J. Phys. D, 55, 155102(2022).

    [32] W. Hu, J. Hu, Y. Xiang, S. C. Wen. Dynamically reconfigurable topological states in photonic crystals with liquid crystals. Opt. Lett., 46, 2589-2592(2021).

    [33] H. Abbaszadeh, M. Fruchart, W. V. Saarloos, V. Vitelli. Liquid-crystal-based topological photonics. Proc. Natl. Acad. Sci. USA, 118, e2020525118(2021).

    [34] Y. Arakawa, S. Kang, H. Tsuji, J. Watanabe, G. I. Konishi. The design of liquid crystalline bistolane-based materials with extremely high birefringence. RSC Adv., 6, 92845-92851(2016).

    [35] K. Okano, A. Shishido, T. Ikeda. An azotolane liquid‐crystalline polymer exhibiting extremely large birefringence and its photoresponsive behavior. Adv. Mater., 18, 523-527(2006).

    [36] Y.-M. Liao, H.-L. Chen, C.-S. Hsu, S. Gauza, S.-T. Wu. Synthesis and mesomorphic properties of super high birefringence isothiocyanato bistolane liquid crystals. Liq. Cryst., 34, 507-517(2007).

    [37] X. L. Guan, L. Y. Zhang, Z. L. Zhang, Z. Shen, X. F. Chen, X. H. Fan, Q.-F. Zhou. Synthesis and properties of novel liquid crystalline materials with super high birefringence: styrene monomers bearing diacetylenes, naphthyl, and nitrogen-containing groups. Tetrahedron, 65, 3728-3732(2009).

    [38] S. M. Trimberger. Field-Programmable Gate Array Technology(2012).

    [39] A. B. Khanikaev, S. Mousavi Hossein, W. K. Tse, M. Kargarian, A. H. MacDonald, G. Shvets. Photonic topological insulators. Nat. Mater., 12, 233-239(2013).

    [40] T. Ma, A. B. Khanikaev, S. H. Mousavi, G. Shvets. Guiding electromagnetic waves around sharp corners: topologically protected photonic transport in metawaveguides. Phys. Rev. Lett., 114, 127401(2015).

    [41] F. Gao, Z. Gao, X. Shi, Z. Yang, X. Lin, H. Xu, J. D. Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong, B. Zhang. Probing topological protection using a designer surface plasmon structure. Nat. Commun., 7, 1-9(2016).

    [42] M. Ezawa. Symmetry protected topological charge in symmetry broken phase: spin-Chern, spin-valley-Chern and mirror-Chern numbers. Phys. Lett. A, 378, 1180-1184(2014).

    [43] X. L. Qi, Y. S. Wu, S. C. Zhang. General theorem relating the bulk topological number to edge states in two-dimensional insulators. Phys. Rev. B, 74, 045125(2006).

    [44] Y. Yang, Y. F. Xu, T. Xu, H. X. Wang, J. H. Jiang, X. Hu, Z. H. Hang. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials. Phys. Rev. Lett., 120, 217401(2018).

    [45] S. T. Wu. Fundamentals of Liquid Crystal Devices(2006).

    [46] Y. J. Liu, G. Y. Si, E. S. P. Leong, B. Wang, A. J. Danner, X. C. Yuan, J. H. Teng. Optically tunable plasmonic color filters. Appl. Phys. A, 107, 49-54(2012).

    [47] K. T. Kim, N. I. Moon, H. K. Kim. A fiber-optic UV sensor based on a side-polished single mode fiber covered with azobenzene dye-doped polycarbonate. Sens. Actuat. A Phys., 160, 19-21(2010).

    [48] J. Li, S. Gauza, S. T. Wu. Temperature effect on liquid crystal refractive indices. J. Appl. Phys., 96, 19-24(2004).

    [49] K. D. Thingujama, S. D. Sarkara, B. Choudhurya, A. Bhattacharjeea. Effect of temperature on the refractive indices of liquid crystals and validation of a modified four-parameter model. Acta Phys. Pol. A, 122, 754(2012).

    [50] L. J. Chen, J. D. Lin, C. R. Lee. An optically stable and tunable quantum dot nanocrystal-embedded cholesteric liquid crystal composite laser. J. Mater. Chem. C, 2, 4388-4394(2014).

    [51] Y. Yu, T. Ikeda. Alignment modulation of azobenzene-containing liquid crystal systems by photochemical reactions. J. Photochem. Photobiol. C, 5, 247-265(2004).

    [52] L. He, H. Ji, Y. Wang, X. Zhang. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt. Express, 28, 34015-34023(2020).

    [53] S. Ma, S. M. Anlage. Microwave applications of photonic topological insulators. Appl. Phys. Lett., 116, 250502(2020).

    Xiaoxian He, Xiangru Wang, Yulin Zhao, Rusheng Zhuo, Feng Liang. Field programmable topological edge array[J]. Photonics Research, 2023, 11(3): 476
    Download Citation