• Advanced Photonics
  • Vol. 3, Issue 1, 015001 (2021)
Xinyuan Fang1、2、†, Haocheng Yang1, Wenzhe Yao1, Tianxin Wang1, Yong Zhang1、*, Min Gu2, and Min Xiao1、3
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, School of Physics, National Laboratory of Solid State Microstructures, Nanjing, China
  • 2University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Centre for Artificial-Intelligence Nanophotonics, Shanghai, China
  • 3University of Arkansas, Department of Physics, Fayetteville, Arkansas, United States
  • show less
    DOI: 10.1117/1.AP.3.1.015001 Cite this Article Set citation alerts
    Xinyuan Fang, Haocheng Yang, Wenzhe Yao, Tianxin Wang, Yong Zhang, Min Gu, Min Xiao. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 2021, 3(1): 015001 Copy Citation Text show less
    References

    [1] D. Gabor. A new microscopic principle. Nature, 161, 777-778(1948).

    [2] E. N. Leith, J. Upatnieks. Wavefront reconstruction with diffused illumination and three-dimensional objects. J. Opt. Soc. Am., 54, 1295-1301(1964).

    [3] J. F. Heanue, M. C. Bashaw, L. Hesselink. Volume holographic storage and retrieval of digital data. Science, 265, 749-752(1994).

    [4] J. Li et al. Addressable metasurfaces for dynamic holography and optical information encryption. Sci. Adv., 4, eaar6768(2018).

    [5] R. L. Powell, K. A. Stetson. Interferometric vibration analysis by wavefront reconstruction. J. Opt. Soc. Am., 55, 1593-1598(1965).

    [6] D. Gabor. Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. A Math. Phys. Sci., 197, 454-487(1949).

    [7] X. Li et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2, e1601102(2016).

    [8] J. B. Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [9] G. Makey et al. Breaking crosstalk limits to dynamic holography using orthogonality of high-dimensional random vectors. Nat. Photonics, 13, 251-256(2019).

    [10] X. Hong et al. Nonlinear volume holography for wave-front engineering. Phys. Rev. Lett., 113, 163902(2014).

    [11] S. Trajtenberg-Mills, I. Juwiler, A. Arie. On-axis shaping of second-harmonic beams. Laser Photonics Rev., 9, L40-L44(2015).

    [12] H. Liu et al. Dynamic computer-generated nonlinear-optical holograms. Phys. Rev. A, 96, 023801(2017).

    [13] H. Liu et al. Dynamic computer-generated nonlinear optical holograms in a non-collinear second-harmonic generation process. Opt. Lett., 43, 3236-3239(2018).

    [14] H. Wang et al. Controllable generation of second-harmonic vortex beams through nonlinear supercell grating. Appl. Phys. Lett., 113, 221101(2018).

    [15] E. Almeida, O. Bitton, Y. Prior. Nonlinear metamaterials for holography. Nat. Commun., 7, 12533(2016).

    [16] R. W. Boyd. Nonlinear Optics(2012).

    [17] W. Ye et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun., 7, 11930(2016).

    [18] B. Reineke et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett., 19, 6585-6591(2019).

    [19] Z. Lin et al. Four-wave mixing holographic multiplexing based on nonlinear metasurfaces. Adv. Opt. Mater., 7, 1900782(2019).

    [20] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161-204(2011).

    [21] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [22] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [23] H. Ren et al. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).

    [24] A. Mair et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [25] R. Fickler et al. Quantum entanglement of high angular momenta. Science, 338, 640-643(2012).

    [26] R. Fickler et al. Quantum entanglement of angular momentum states with quantum numbers up to 10,010. Proc. Natl. Acad. Sci. U. S. A., 113, 13642-13647(2016).

    [27] X. Fang, H. Ren, M. Gu. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2020).

    [28] H. Ren et al. Metasurface orbital angular momentum holography. Nat. Commun., 10, 2986(2019).

    [29] K. Dholakia et al. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A, 54, R3742-R3745(1996).

    [30] X. Fang et al. Multiple copies of orbital angular momentum states through second-harmonic generation in a two-dimensional periodically poled LiTaO3 crystal. Appl. Phys. Lett., 107, 161102(2015).

    [31] Y. Sheng et al. Theoretical investigations of nonlinear Raman–Nath diffraction in the frequency doubling process. J. Phys. B: Mol. Opt. Phys., 45, 055401(2012).

    [32] V. V. Kotlyar, A. A. Kovalev, A. P. Porfirev. Astigmatic transforms of an optical vortex for measurement of its topological charge. Appl. Opt., 56, 4095-4104(2017).

    [33] N. Segal et al. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics, 9, 180-184(2015).

    [34] H. Qi et al. Cascaded third-harmonic generation with one KDP crystal. Opt. Lett., 41, 5823-5826(2016).

    [35] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [36] D. Wei et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat. Photonics, 12, 596-600(2018).

    [37] T. Xu et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat. Photonics, 12, 591-595(2018).

    [38] D. Wei et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat. Commun., 10, 4193(2019).

    [39] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [40] M. Polin et al. Optimized holographic optical traps. Opt. Express, 13, 5831-5845(2005).

    [41] X. Fang et al. Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal. Opt. Lett., 41, 1169-1172(2016).

    CLP Journals

    [1] Shiyao Fu, Zijun Shang, Lan Hai, Lei Huang, Yanlai Lv, Chunqing Gao. Orbital angular momentum comb generation from azimuthal binary phases[J]. Advanced Photonics Nexus, 2022, 1(1): 016003

    [2] Peijun Liu, Yanan Fu, Xi Xie, Changjun Min, Yuquan Zhang, Xiaocong Yuan. High-efficiency monolayer metallic metasurface for modulation of orbital angular momentum[J]. Chinese Optics Letters, 2022, 20(12): 123601

    [3] Xutong Wang, Sheng Yu, Shengshuai Liu, Kai Zhang, Yanbo Lou, Wei Wang, Jietai Jing. Deterministic generation of large-scale hyperentanglement in three degrees of freedom[J]. Advanced Photonics Nexus, 2022, 1(1): 016002

    Xinyuan Fang, Haocheng Yang, Wenzhe Yao, Tianxin Wang, Yong Zhang, Min Gu, Min Xiao. High-dimensional orbital angular momentum multiplexing nonlinear holography[J]. Advanced Photonics, 2021, 3(1): 015001
    Download Citation