• Acta Optica Sinica
  • Vol. 31, Issue 9, 900125 (2011)
Rao Ruizhong*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201131.0900125 Cite this Article Set citation alerts
    Rao Ruizhong. General Characteristics of Modulation Transfer Function of Turbid Atmosphere[J]. Acta Optica Sinica, 2011, 31(9): 900125 Copy Citation Text show less
    References

    [1] F. E. Volz. Scattering functions near the Sun by large aerosols[J]. Appl. Opt., 1993, 32(15): 2773~2779

    [2] L. R. Bissonnette. Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: comment[J]. J. Opt. Soc. Am. A, 1994, 11(3): 1175~1179

    [3] F. M. Mims. Solar aureoles caused by dust, smoke, and haze[J]. Appl. Opt., 2003, 42(3): 492~496

    [4] S. G. Narasimhan, S. K. Nayar. Vision and the atmosphere[J]. Int. J. Computer Vision, 2002, 48(3): 233~254

    [5] Y. Y. Schechner, S. G. Narasimhan, S. K. Nayar. Polarization-based vision through haze[J]. Appl. Opt., 2003, 42(3): 511~524

    [6] R. F. Lutmokirski. Atmospheric degradation of electrooptical system performance[J]. Appl. Opt., 1978, 17(24): 3915~3921

    [7] A. Zardecki, S. A. W. Gerstl, J. F. Embury. Multiple scattering effects in spatial frequency filtering[J]. Appl. Opt., 1984, 23(22): 4124~4131

    [8] M. T. Valley. Numerical method for modeling nonspherical aerosol modulation transfer functions[C]. SPIE, 1992, 1688: 73~85

    [9] W. A. Pearce W A. Monte Carlo study of the atmospheric spread function[J]. Appl. Opt., 1986, 25(3): 438~447

    [10] P. Bruscaglioni, P. Donelli, A. Ismaelli et al.. Monte Carlo calculations of the modulation transfer function of an optical system operating in a turbid medium[J]. Appl. Opt., 1993, 32(15): 2813~2824

    [11] P. N. Reinersman, K. L. Carder. Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect[J]. Appl. Opt., 1995, 34(21): 4453~4471

    [12] P. Chervet, C. Lavigne, A. Roblin et al.. Effects of aerosol scattering phase function formulation on point-spread-function calculations[J]. Appl. Opt., 2002, 41(30): 6489~6498

    [13] Y. Kuga Y., A. Ishimaru A.. Modulation transfer function and image transmission through randomly distributed spherical particles[J]. J. Opt. Soc. Am. A, 1985, 2(12): 2330~2335

    [14] Y. Kuga, A. Ishimaru. Modulation transfer function of layered inhomogeneous random medium using the small-angle approximation[J]. Appl. Opt., 1986, 25(23): 4382~4385

    [15] B. Ben Dor, A. D. Devir, G. Shaviv et al.. Atmospheric scattering effect on spatial resolution of imaging systems[J]. J. Opt. Soc. Am. A, 1997, 14(6): 1329~1337

    [16] L. R. Bissonnette. Imaging through fog and rain[J]. Opt. Engng., 1992, 31(5): 1045~1052

    [17] I. Dror, N. S. Kopeika. Aerosol and turbulence modulation transfer functions: comparison measurements in the open atmosphere[J]. Opt. Lett., 1992, 17(21): 1532~1534

    [18] I. Dror, N. S. Kopeika. Experimental comparison of turbulence modulation transfer function and aerosol modulation transfer function through the open atmosphere[J]. J. Opt. Soc. Am. A, 1995, 12(5): 970~980

    [19] K. Buskila, S Towito, E Shmuel et al.. Atmospheric modulation transfer function in the infrared[J]. Appl. Opt., 2004, 43(2): 471~482

    [20] D. Sadot, N. S. Kopeika. Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function[J]. J. Opt. Soc. Am. A, 1993, 10(1): 172~179

    [21] N. S. Kopeika, D. Sadot. Imaging through the atmosphere: practical instrumentation-based theory and verification of aerosol modulation transfer function: reply to comment[J]. J. Opt. Soc. Am. A, 1995, 12(5): 1017~1023

    [22] N. S. Kopeika, I. Dror, D. adot. Causes of atmospheric blur: comment on tmospheric scattering effect on a spatial resolution of imaging systems[J]. J. Opt. Soc. Am. A, 1998, 15(12): 3097~3106

    [23] R. F. Lutmokirski, H. T. Yura. Imaging of extended objects through a turbulent atmosphere[J]. Appl. Opt., 1974, 13(2): 431~437

    [24] S. Chandrasekhar. Radiative Transfer[M]. London: Oxford University Press, 1950

    [25] K. Stamnes, S.-C. Tsay, W. Wiscombe et al.. A numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered medium[J]. Appl. Opt., 1988, 27(12): 2502~2509

    [26] D. Sadot, A. Dvir, I. Bergel et al.. Restoration of thermal images distorted by the atmosphere, based on measured and theoretical atmospheric modulation transfer function[J]. Opt. Engng., 1994, 33(1): 44~53

    [27] N. S. Kopeika. Aerosol modulation transfer function: an overview[C]. SPIE, 1997, 3125: 214~225

    [28] N. S. Kopeika, D. Arbel′. Imaging through the atmosphere: an overview[C]. SPIE, 1999, 3609: 78~89

    [29] D. Dermendjian. Electromagnetic Scattering on Spherical Polydispersion[M]. New York: American Elsevier, 1969

    CLP Journals

    [1] Wu Pengfei, Xu Qingshan, Fang Shuai, Rao Ruizhong. Optical Model of Image Degradation in Atmospheric Inhomogeneous Path[J]. Acta Optica Sinica, 2012, 32(5): 501002

    [2] Wang Ziqian, Zhang Xudong, Jin Haihong, Fan Zhiguo. All Sky Turbid Atmospheric Polarization Pattern Modeling Based on Monte Carlo Method[J]. Chinese Journal of Lasers, 2014, 41(10): 1013001

    [3] Rao Ruizhong. Solar Radiation Pressure on Water Cloud Particles[J]. Acta Optica Sinica, 2013, 33(1): 101003