• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1714011 (2022)
Qibao Ji1、2, Wenyan Wang1、2、*, Shuaifeng Zhang3, Lü Yifan3, Jingpei Xie1、2, Aiqin Wang1、2, and Pei Liu1、2
Author Affiliations
  • 1School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, Henan , China
  • 2Provincial and Ministerial Co-Construction of Collaborative Innovation Center for Non-Ferrous Metal New Materials and Advanced Processing Technology, Luoyang 471023, Henan , China
  • 3Luoyang Ship Material Research Institute, Luoyang 471023, Henan , China
  • show less
    DOI: 10.3788/LOP202259.1714011 Cite this Article Set citation alerts
    Qibao Ji, Wenyan Wang, Shuaifeng Zhang, Lü Yifan, Jingpei Xie, Aiqin Wang, Pei Liu. Numerical Simulation Analysis of TA2 Industrial Pure Titanium Laser Welding[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1714011 Copy Citation Text show less
    References

    [1] Chen S L, Luo S X, Yu H et al. Effect of beam defocusing on porosity formation in laser-MIG hybrid welded TA2 titanium alloy joints[J]. Journal of Manufacturing Processes, 58, 1221-1231(2020).

    [2] Yang X W, Li W Y, Fu Y et al. Finite element modelling for temperature, stresses and strains calculation in linear friction welding of TB9 titanium alloy[J]. Journal of Materials Research and Technology, 8, 4797-4818(2019).

    [3] Zhan X H, Peng Q Y, Wei Y H et al. Experimental and simulation study on the microstructure of TA15 titanium alloy laser beam welded joints[J]. Optics & Laser Technology, 94, 279-289(2017).

    [4] Zhang Y, Chen Y K, Zhou J P et al. Experimental and numerical study on microstructure and mechanical properties for laser welding-brazing of TC4 Titanium alloy and 304 stainless steel with Cu-base filler metal[J]. Journal of Materials Research and Technology, 9, 465-477(2020).

    [5] Liu J Z, Zhan X H, Gao Z N et al. Microstructure and stress distribution of TC4 titanium alloy joint using laser-multi-pass-narrow-gap welding[J]. The International Journal of Advanced Manufacturing Technology, 108, 3725-3735(2020).

    [6] Xiong L D, Mi G Y, Wang C M et al. Numerical simulation of residual stress for laser welding of Ti-6Al-4V alloy considering solid-state phase transformation[J]. Journal of Materials Engineering and Performance, 28, 3349-3360(2019).

    [7] Geng S N, Jiang P, Guo L Y et al. Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys[J]. International Journal of Heat and Mass Transfer, 149, 119252(2020).

    [8] Guo S, Peng Y, Zhu J et al. Microstructure and mechanical properties of laser welded Ti/Al alloys[J]. Chinese Journal of Lasers, 45, 1102010(2018).

    [9] Hu L X, Zhou D W, Jia X et al. Numerical simulation and laser butt welding of Zr-Sn-Nb-Fe zirconium alloy sheets[J]. Chinese Journal of Lasers, 43, 0702002(2016).

    [10] Dal M, Fabbro R. An overview of the state of art in laser welding simulation[J]. Optics & Laser Technology, 78, 2-14(2016).

    [11] Chen J W, Xiong F Y, Huang C Y et al. Numerical simulation on metallic additive manufacturing[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 50, 104-128(2020).

    [12] Chen D N, Liu T T, Liao W H et al. Temperature field during selective laser melting of metal powder under different scanning strategies[J]. Chinese Journal of Lasers, 43, 0403003(2016).

    [13] Wu D. Finite element analysis for temperature and stresses in the alloy steel laser melting deposition process[D](2019).

    [14] Li Z X, Rostam K, Panjehpour A et al. Experimental and numerical study of temperature field and molten pool dimensions in dissimilar thickness laser welding of Ti6Al4V alloy[J]. Journal of Manufacturing Processes, 49, 438-446(2020).

    [15] Li X Y, Li F, Hua X M et al. Laser welding technology of industrial pure titanium TA2[J]. Electric Welding Machine, 48, 19-24, 35(2018).

    [16] Li Z, Shi Y, Liu J et al. Effect of laser welding parameters on microstructure and mechanical properties of commercial pure titanium[J]. Applied Laser, 36, 53-57(2016).

    [17] Akbari M, Saedodin S, Toghraie D et al. Experimental and numerical investigation of temperature distribution and melt pool geometry during pulsed laser welding of Ti6Al4V alloy[J]. Optics & Laser Technology, 59, 52-59(2014).

    [18] Zhang F. Study on the mechanism of porosity formation and laser welding technology of commercial pure titanium TA2[D](2017).

    [19] Wu X Y, Su H, Sun Y et al. Thermal-mechanical coupled numerical analysis of laser + GMAW hybrid heat source welding process[J]. Transactions of the China Welding Institution, 42, 91-96, 103(2021).

    [20] Kik T. Heat source models in numerical simulations of laser welding[J]. Materials, 13, 2653(2020).

    [21] Wang B S, Kong L, Wang M et al. Influence of temperature field and residual stress distribution on microstructure and properties of pure titanium TA2 thin-walled pipe by tandem TIG welding[J]. Electric Welding Machine, 51, 8, 14-19(2021).

    [22] Tsirkas S A. Numerical simulation of the laser welding process for the prediction of temperature distribution on welded aluminium aircraft components[J]. Optics & Laser Technology, 100, 45-56(2018).

    [23] Xue Z Q. Fluid dynamics simulation of laser-welded Cu/Al molten pool and researches on joint microstructure characteristics[D](2014).

    Qibao Ji, Wenyan Wang, Shuaifeng Zhang, Lü Yifan, Jingpei Xie, Aiqin Wang, Pei Liu. Numerical Simulation Analysis of TA2 Industrial Pure Titanium Laser Welding[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1714011
    Download Citation