• Journal of Innovative Optical Health Sciences
  • Vol. 3, Issue 4, 221 (2010)
XING LIANG1、2, VASILICA CRECEA2、3, and STEPHEN A. BOPPART2、4、*
Author Affiliations
  • 1Department of Electrical and Computer Engineering
  • 2Biophotonics Imaging Laboratory Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana, IL, 61801, USA
  • 3Department of Physics
  • 4Departments of Electrical and Computer Engineering Bioengineering, and Internal Medicine
  • show less
    DOI: 10.1142/s1793545810001180 Cite this Article
    XING LIANG, VASILICA CRECEA, STEPHEN A. BOPPART. DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW[J]. Journal of Innovative Optical Health Sciences, 2010, 3(4): 221 Copy Citation Text show less
    References

    [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).

    [2] J. M. Schmitt, “OCT elastography: Imaging microscopic deformation and strain of tissue,” Opt. Express 3, 199–211 (1998).

    [3] S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14, 11,585–11,597 (2006).

    [4] Y. Yang, P. O. Bagnaninchi, M. Ahearne, R. K. Wang, K. K. Liu, “A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels,” J. R. Soc. Interface 4, 1169–1173 (2007).

    [5] B. Heise, K. Wiesauer, E. Gotzinger, M. Pircher, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Grutzner, D. Stifter, “Spatially resolved stress measurements in materials with polarisation-sensitive optical coherence tomography: Image acquisition and processing aspects,” Strain 46, 61–68 (2010).

    [6] S. G. Adie, B. F. Kennedy, J. J. Armstrong, S. A. Alexandrov, D. D. Sampson, “Audio frequency in vivo optical coherence elastography,” Phys. Med. Biol. 54, 3129–3139 (2009).

    [7] B. F. Kennedy, T. R. Hillman, R. A. McLaughlin, B. C. Quirk, D. D. Sampson, “In vivo dynamic optical coherence elastography using a ring actuator,” Opt. Express 17, 21,762–21,772 (2009).

    [8] R. K. Wang, S. Kirkpatrick, M. Hinds, “Phasesensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90, 164105 (2007).

    [9] R. C. Chan, A. H. Chau, W. C. Karl, S. Nadkarni, A. S. Khalil, N. Iftimia, M. Shishkov, G. J. Tearney, M. R. Kaazempur-Mofrad, B. E. Bouma, “OCT-based arterial elastography: Robust estimation exploiting tissue biomechanics,” Opt. Express 12, 4558–4572 (2004).

    [10] J. Rogowska, N. A. Patel, J. G. Fujimoto, M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90, 556– 562 (2004).

    [11] A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, M. R. Kaazempur-Mofrad, “Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33, 1631–1639 (2005).

    [12] J. Rogowska, N. Patel, S. Plummer, M. E. Brezinski, “Quantitative optical coherence tomographic elastography: Method for assessing arterial mechanical properties,” Br. J. Radiol. 79, 707–711 (2006).

    [13] G. van Soest, F. Mastik, N. de Jong, A. F. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52, 2445–2458 (2007).

    [14] R. Karimi, T. Zhu, B. E. Bouma, M. R. Kaazempur- Mofrad, “Estimation of nonlinear mechanical properties of vascular tissues via elastography,” Cardiovasc. Eng. 8, 191–202 (2008).

    [15] H. J. Ko,W. Tan, R. Stack, S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12, 63–73 (2006).

    [16] Q. Wang, Y.-C. Ahn, C. Kim, L. Yu, W. Jia, B. Rao, Z. Chen, H. K. Chiang, “Thermoelastic optical Doppler tomography of biological tissues,” Proc. SPIE 6847, 68471B (2008).

    [17] J. M. Schmitt, S. H. Xiang, K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999).

    [18] J. F. Greenleaf, M. Fatemi, M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5, 57–78 (2003).

    [19] X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16, 11,052–11,065 (2008).

    [20] X. Liang, M. Orescanin, K. S. Toohey, M. F. Insana, S. A. Boppart, “Acoustomotive optical coherence elastography for measuring material mechanical properties,” Opt. Lett. 34, 2894–2896 (2009).

    [21] V. Crecea, A. L. Oldenburg, X. Liang, T. S. Ralston, S. A. Boppart, “Magnetomotive nanoparticle transducers for optical rheology of viscoelastic materials,” Opt. Express 17, 23,114–23,122 (2009).

    [22] L. Wang, Y. M. Wang, S. G. Guo, J. Zhang, M. Bachman, G. P. Li, Z. P. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Optics Communications 242, 345–350 (2004).

    [23] X. Liang, S. A. Boppart, “Dynamic optical coherence elastography and applications,” Proc. SPIE 7634, 763403 (2009).

    [24] D. A. Medalie, S. A. Eming, M. E. Collins, R. G. Tompkins, M. L. Yarmush, J. R. Morgan, “Differences in dermal analogs influence subsequent pigmentation, epidermal differentiation, basement membrane, and rete ridge formation of transplanted composite skin grafts,” Transplantation 64, 454–465 (1997).

    [25] A. Bayon, F. Gascon, F. J. Nieves, “Estimation of dynamic elastic constants from the amplitude and velocity of Rayleigh waves,” J. Acoust. Soc. Am. 117, 3469–3477 (2005).

    [26] R. O. Potts, D. A. Chrisman, Jr., E. M. Buras, Jr., “The dynamic mechanical properties of human skin in vivo,” J. Biomech. 16, 365–372 (1983).

    [27] B. J. Fahey, R. C. Nelson, D. P. Bradway, S. J. Hsu, D. M. Dumont, G. E. Trahey, “In vivo visualization of abdominal malignancies with acoustic radiation force elastography,” Phys. Med. Biol. 53, 279–293 (2008).

    [28] E. J. Chen, R. S. Adler, P. L. Carson,W. K. Jenkins, W. D. O’Brien, Jr., “Ultrasound tissue displacement imaging with application to breast cancer,” Ultrasound Med. Biol. 21, 1153–1162 (1995).

    [29] K. R. Nightingale,M. L. Palmeri, R.W. Nightingale, G. E. Trahey, “On the feasibility of remote palpation using acoustic radiation force,” J. Acoust. Soc. Am. 110, 625–634 (2001).

    [30] A. L. Oldenburg, J. R. Gunther, S. A. Boppart, “Imaging magnetically labeled cells with magnetomotive optical coherence tomography,” Opt. Lett. 30, 747–749 (2005).

    [31] E. P. Furlani, “Magnetophoretic separation of blood cells at the microscale,” J. Phys. D — Appl. Phys. 40, 1313–1319 (2007).

    [32] A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13, 6597–6614 (2005).

    [33] A. L. Oldenburg, V. Crecea, S. A. Rinne, S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express 16, 11,525– 11,539 (2008).

    [34] R. John, E. J. Chaney, S. A. Boppart, “Dynamics of magnetic nanoparticle-based contrast agents in tissues tracked using magnetomotive optical coherence tomography,” IEEE J. Select. Topics Quantum Electronics 16, 691–697 (2010).

    [35] A. L. Oldenburg, S. A. Boppart, “Resonant acoustic spectroscopy of soft tissues using embedded magnetomotive nanotransducers and optical coherence tomography,” Phys. Med. Biol. 55, 1189–1201 (2010).

    [36] J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. G. Yoon, J. S. Suh, J. Cheon, “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nat. Med. 13, 95–99 (2007).

    [37] R. John, R. Rezaeipoor, S. G. Adie, E. J. Chaney, A. L. Oldenburg, M. Marjanovic, J. P. Haldar, B. P. Sutton, S. A. Boppart, “In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes,” Proc. Natl. Acad. Sci. USA 107, 8085– 8090 (2010).

    [38] S. J. DeNardo, G. L. DeNardo, L. A. Miers, A. Natarajan, A. R. Foreman, C. Gruettner, G. N. Adamson, R. Ivkov, “Development of tumor targeting bioprobes ((111)In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy,” Clin. Cancer Res. 11, 7087s–7092s (2005).

    [39] R. Koole, W. J. Mulder, M. M. van Schooneveld, G. J. Strijkers, A. Meijerink, K. Nicolay, “Magnetic quantum dots for multimodal imaging,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 475– 491 (2009).

    [40] X. Liang, S. G. Adie, R. John, S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express 18, 14,183–14,190 (2010).

    [41] X. Liang, S. A. Boppart, “Biomechanical properties of in vivo human skin from dynamic optical coherence elastography,” IEEE Trans. Biomed. Eng. 57, 953–959 (2009).

    XING LIANG, VASILICA CRECEA, STEPHEN A. BOPPART. DYNAMIC OPTICAL COHERENCE ELASTOGRAPHY: A REVIEW[J]. Journal of Innovative Optical Health Sciences, 2010, 3(4): 221
    Download Citation