• Advanced Photonics
  • Vol. 2, Issue 5, 056002 (2020)
Xuanke Zeng1、2, Shuiqin Zheng1, Yi Cai1, Qinggang Lin1, Jinyang Liang3, Xiaowei Lu1, Jingzhen Li1, Weixin Xie2, and Shixiang Xu1、*
Author Affiliations
  • 1Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen Key Lab of Micro-Nano Photonic Information Technology, Shenzhen, China
  • 2Shenzhen University, College of Electronic Information Engineering, Shenzhen, China
  • 3Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
  • show less
    DOI: 10.1117/1.AP.2.5.056002 Cite this Article Set citation alerts
    Xuanke Zeng, Shuiqin Zheng, Yi Cai, Qinggang Lin, Jinyang Liang, Xiaowei Lu, Jingzhen Li, Weixin Xie, Shixiang Xu. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2020, 2(5): 056002 Copy Citation Text show less
    References

    [1] M. Garcia-Lechuga et al. Femtosecond laser ablation of dielectric materials in the optical breakdown regime: expansion of a transparent shell. Appl. Phys. Lett., 105, 112902(2014).

    [2] R. Betti, O. A. Hurricane. Inertial-confinement fusion with lasers. Nat. Phys., 12, 435-448(2016).

    [3] A. Couairon, A. Mysyrowicz. Femtosecond filamentation in transparent media. Phys. Rep., 441, 47-189(2007).

    [4] K. Nakagawa et al. Sequentially timed all-optical mapping photography (STAMP). Nat. Photonics, 8, 695-700(2014).

    [5] P. Hockett et al. Time resolved imaging of purely valence-electron dynamics during a chemical reaction. Nat. Phys., 7, 612-615(2011).

    [6] G. Herink et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science, 356, 50-54(2017).

    [7] X. Liu, Y. Cui. Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics, 1, 016003(2019).

    [8] C. Y. Wong et al. Eletronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nat. Chem., 4, 396-404(2012).

    [9] J. Liang et al. Single-shot real-time video recording of photonic Mach cone induced by a scattered light pulse. Sci. Adv., 3, e1601814(2017).

    [10] A. Velten et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun., 3, 745(2012).

    [11] A. H. Zewail. Four-dimensional electron microscopy. Science, 328, 187-193(2010).

    [12] J. Liang, L. V. Wang. Single-shot ultrafast optical imaging. Optica, 5, 1113-1127(2018).

    [13] J. Liang. Punching holes in light: recent progress in single-shot coded-aperture optical imaging. Rep. Prog. Phys.(2020).

    [14] P. W. W. Fuller. An introduction to high speed photography and photonics. Imaging Sci. J., 57, 293-302(2009).

    [15] C. Yang et al. Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica, 5, 147-151(2018).

    [16] L. Gao et al. Single-shot compressed ultrafast photography at one hundred billion frame per second. Nature, 516, 74-77(2014).

    [17] J. Liang, L. Zhu, L. V. Wang. Single-shot real-time femtosecond imaging of temporal focusing. Light Sci. Appl., 7, 42(2018).

    [18] T. King et al. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. Sci. Adv., 6, eaay6200(2020).

    [19] K. Goda, K. K. Tsia, B. Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 458, 1145-1149(2009).

    [20] N. H. Matlis, A. Axley, W. P. Leemans. Single-shot ultrafast tomographic imaging by spectral multiplexing. Nat. Commun., 3, 1111(2012).

    [21] Z. Li et al. Single-shot tomographic movies of evolving light-velocity objects. Nat. Commun., 5, 3085(2014).

    [22] T. Suzuki et al. Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Opt. Express, 23, 30512-30522(2015).

    [23] M. Tamamitsu et al. Design for sequentially time all-optical mapping photography with optimum temporal performance. Opt. Lett., 40, 633-636(2015).

    [24] T. Suzuki et al. Single-shot 25-frame burst imaging of ultrafast phase transition of Ge2Sb2Te5 with a sub-picosecond resolution. Appl. Phys. Express, 10, 092502-4(2017).

    [25] A. Ehn et al. FRAME: femtosecond videography for atomic and molecular dynamics. Light Sci. Appl., 6, e17045(2017).

    [26] G. Chen et al. All-optical coaxial framing photography using parallel coherence shutters. Opt. Lett., 42, 415-418(2017).

    [27] G. Chen, J. Li, J. Li. Femtosecond multiframe digital holography with parallel coherence shutters. Digital Hologr. and 3D Imag., Th4B.1(2019).

    [28] Y. Lu et al. Compressed ultrafast spectral-temporal photography. Phy. Rev. Lett., 122, 193904(2019).

    [29] J. Moon et al. Single-shot imaging of microscopic dynamic scenes at 5 THz frame rates by time and spatial frequency multiplexing. Opt. Express, 28, 4463-4474(2020).

    [30] X. Zeng et al. High resolved non-collinear idler imaging via type-II angular noncritical phase matching. IEEE Photonics Technol. Lett., 28, 2685-2688(2016).

    [31] F. J. Duarte, W. Li et al. Ultrafast laser pulse synchronization. Coherence and Ultrashort Pulse Laser Emission(2010).

    [32] P. M. Vaughan, R. Trebino. Optical-parametric-amplification imaging of complex objects. Opt. Express, 19, 8920-8929(2011).

    [33] P. S. Banks, M. D. Feit, M. D. Perry. High intensity third-harmonic generation. J. Opt. Soc. Am. B, 19, 102-118(2002).

    [34] X. Yang et al. Femtosecond laser pulse energy transfer induced by plasma grating. Appl. Phys. Lett., 97, 071108(2010).

    [35] X. Zeng et al. Generation and imaging of a tunable ultrafast intensity-rotating optical field with a cycle down to femtosecond region. High Power Laser Sci. Eng., 8, e3(2020).

    [36] Y. Shi et al. Magnetic field generation in plasma waves driven by copropagating intense twisted lasers. Phys. Rev. Lett., 121, 145002(2018).

    [37] J. Vieira et al. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun., 7, 10371(2016).

    [38] E. Nanni et al. Terahertz-driven linear electron acceleration. Nat. Commun., 6, 8486(2015).

    [39] K. Lin et al. Spatiotemporal rotational dynamics of laser-driven molecules. Adv. Photonics, 2, 024002(2020).

    [40] A. Jarnac. Study of laser induced plasma grating dynamics in gases. Opt. Commun., 312, 35-42(2014).

    [41] M. Vasilyev, N. Stelmakh, P. Kumar. Estimation of the spatial bandwidth of an optical parametric amplifier with plane-wave pump. J. Mod. Opt., 56, 2029-2033(2009).

    [42] L. V. Sokolov, M. I. Kolobov, L. A. Lugiato. Quantum fluctuations in traveling-wave amplification of optical images. Phys. Rev. A., 60, 2420-2430(1999).

    [43] X. Zeng et al. High spatial resolved idler image with a compact non-collinear optical parametric amplifier using a CW laser as signal. IEEE Photonics J., 7, 6804107(2015).

    CLP Journals

    [1] Xiao-Cong (Larry) Yuan, Anatoly Zayats. Laser: sixty years of advancement[J]. Advanced Photonics, 2020, 2(5): 050101

    Xuanke Zeng, Shuiqin Zheng, Yi Cai, Qinggang Lin, Jinyang Liang, Xiaowei Lu, Jingzhen Li, Weixin Xie, Shixiang Xu. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification[J]. Advanced Photonics, 2020, 2(5): 056002
    Download Citation