• Advanced Photonics
  • Vol. 6, Issue 6, 066001 (2024)
Hongxuan Liu1,†, Bingcheng Pan1, Huan Li1, Zejie Yu1,2,3..., Liu Liu1,2,3,4, Yaocheng Shi1,2,3,4 and Daoxin Dai1,2,3,4,*|Show fewer author(s)
Author Affiliations
  • 1Zhejiang University, State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Hangzhou, China
  • 2Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
  • 3Jiaxing Research Institute Zhejiang University, Intelligent Optics and Photonics Research Center, Jiaxing, China
  • 4Zhejiang University, Ningbo Research Institute, Ningbo, China
  • show less
    DOI: 10.1117/1.AP.6.6.066001 Cite this Article Set citation alerts
    Hongxuan Liu, Bingcheng Pan, Huan Li, Zejie Yu, Liu Liu, Yaocheng Shi, Daoxin Dai, "First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters," Adv. Photon. 6, 066001 (2024) Copy Citation Text show less

    Abstract

    Modern optical communications rely heavily on dense wavelength-division multiplexing (DWDM) technology because of its capability of significantly increasing transmission channels. Here, we demonstrate, for the first time to the best of our knowledge, a compact photonic chip for DWDM transmitters on lithium-niobate-on-insulator (LNOI) by introducing the array of 2 × 2 Fabry–Perot (FP) cavity electro-optic (EO) modulators. A four-channel LNOI photonic chip for DWDM is designed and realized with a channel spacing of 1.6 nm (which is the narrowest one reported until now for LNOI optical transmitters), exhibiting a total excess loss of 1.3 dB and high 3-dB EO bandwidths of >67 GHz for all channels. Specifically, these four 2 × 2 FP cavities are designed with broadened LNOI photonic waveguides in the cavity sections, and they are placed very closely on the chip so that their resonance wavelengths are aligned precisely with the desired channel-spacing of ∼1.6 nm. Finally, the generation of 4 × 80-Gbps on–off keying and 4 × 100-Gbps PAM4 signals is demonstrated successfully with four channels, and the power consumption is as low as ∼5.1 fJ / bit. The present photonic chip has a compact footprint of about 0.78 mm × 0.58 mm, showing great potential to work with more than four channels and to be very useful for future large-capacity optical links.
    Supplementary Materials
    Hongxuan Liu, Bingcheng Pan, Huan Li, Zejie Yu, Liu Liu, Yaocheng Shi, Daoxin Dai, "First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters," Adv. Photon. 6, 066001 (2024)
    Download Citation