• Advanced Photonics
  • Vol. 6, Issue 6, 066001 (2024)
Hongxuan Liu1,†, Bingcheng Pan1, Huan Li1, Zejie Yu1,2,3..., Liu Liu1,2,3,4, Yaocheng Shi1,2,3,4 and Daoxin Dai1,2,3,4,*|Show fewer author(s)
Author Affiliations
  • 1Zhejiang University, State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Hangzhou, China
  • 2Jiaxing Key Laboratory of Photonic Sensing and Intelligent Imaging, Jiaxing, China
  • 3Jiaxing Research Institute Zhejiang University, Intelligent Optics and Photonics Research Center, Jiaxing, China
  • 4Zhejiang University, Ningbo Research Institute, Ningbo, China
  • show less
    DOI: 10.1117/1.AP.6.6.066001 Cite this Article Set citation alerts
    Hongxuan Liu, Bingcheng Pan, Huan Li, Zejie Yu, Liu Liu, Yaocheng Shi, Daoxin Dai, "First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters," Adv. Photon. 6, 066001 (2024) Copy Citation Text show less
    References

    [1] A. H. Gnauck et al. High-capacity optical transmission systems. J. Light. Technol., 26, 1032-1045(2008).

    [2] Y. Shi et al. Silicon photonics for high-capacity data communications. Photonics Res., 10, A106-A134(2022).

    [3] Y. Su et al. Scalability of large-scale photonic integrated circuits. ACS Photonics, 10, 2020-2030(2023).

    [4] Y. Huang et al. High-bandwidth Si/In2O3 hybrid plasmonic waveguide modulator. APL Photonics, 7, 051301(2022). https://doi.org/10.1063/5.0087540

    [5] H. Ishio, J. Minowa, K. Nosu. Review and status of wavelength-division-multiplexing technology and its application. J. Light. Technol., 2, 448-463(1984).

    [6] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 3, 283-311(2014).

    [7] Y. Suzaki et al. Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput. IEEE J. Sel. Top. Quantum Electron., 11, 43-49(2005).

    [8] S. Cheung et al. Demonstration of a 17 × 25 Gb/s heterogeneous III-V/Si DWDM transmitter based on (de-)interleaved quantum dot optical frequency combs. J. Light. Technol., 40, 6435-6443(2022).

    [9] R. Nagarajan et al. Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 11, 50-65(2005).

    [10] M. Moralis-Pegios et al. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly. Opt. Express, 28, 5706-5714(2020).

    [11] C. Li et al. Hybrid WDM-MDM transmitter with an integrated Si modulator array and a micro-resonator comb source. Opt. Express, 29, 39847-39858(2021).

    [12] Y. Yuan et al. A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun., 15, 918(2024).

    [13] C. Sun et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits, 51, 893-907(2016).

    [14] J. Sharma et al. Silicon photonic microring-based 4 × 112 Gb/s WDM transmitter with photocurrent-based thermal control in 28-nm CMOS. IEEE J. Solid-State Circuits, 57, 1187-1198(2022).

    [15] P.-H. Chang et al. A 3D integrated energy-efficient transceiver realized by direct bond interconnect of co-designed 12 nm FinFET and silicon photonic integrated circuits. J. Light. Technol., 41, 6741-6755(2023).

    [16] Y. Wang et al. Silicon photonics chip I/O for ultra high-bandwidth and energy-efficient die-to-die connectivity, 1-8(2024).

    [17] E. Andrianopoulos et al. Integrated 800 Gb/s O-band WDM optical transceiver enabled by hybrid InP-polymer photonic integration. J. Opt. Commun. Network, 16, D44-D52(2024).

    [18] M. Levy et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293-2295(1998).

    [19] A. Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).

    [20] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).

    [21] M. Zhang et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 8, 652-657(2021).

    [22] B. Pan et al. Perspective on lithium-niobate-on-insulator photonics utilizing the electro-optic and acousto-optic effects. ACS Photonics, 10, 2078-2090(2023).

    [23] B. Pan et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength. Opt. Express, 29, 17710-17717(2021). https://doi.org/10.1364/OE.416908

    [24] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [25] P. Kharel et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).

    [26] G. Chen et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics, 7, 026103(2022).

    [27] C. Wang et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).

    [28] M. Li et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).

    [29] B. Pan et al. Compact electro-optic modulator on lithium niobate. Photonics Res., 10, 697-702(2022).

    [30] B. Pan et al. Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz. Chip, 1, 100029(2022).

    [31] Y. Xue et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica, 9, 1131-1137(2022).

    [32] K. Chen et al. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform. J. Semicond., 43, 112301(2022).

    [33] H. Liu et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. Light Adv. Manuf., 4, 133-142(2023).

    [34] Q. Fang et al. WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability. Opt. Express, 18, 5106-5113(2010).

    [35] S. Cheung et al. Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron., 20, 310-316(2014).

    [36] D. Dai et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser Photon. Rev., 9, 339-344(2015).

    [37] A. M. Prabhu et al. Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications. IEEE Photonics J., 2, 436-444(2010).

    [38] T. Dai et al. Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators. Opt. Lett., 41, 4807(2016).

    [39] D. Liu et al. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Light. Technol., 39, 5910-5916(2021).

    [40] S. Robinson, R. Nakkeeran. Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng., 52, 060901(2013).

    [41] Z. Wang et al. On-chip arrayed waveguide grating fabricated on thin film lithium niobate(2023).

    [42] Y. Yu et al. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photonics, 9, 3253-3259(2022).

    [43] A. Pan et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express, 27, 35659-35669(2019).

    [44] B. Pan et al. Compact racetrack resonator on LiNbO3. J. Light. Technol., 39, 1770-1776(2021). https://doi.org/10.1109/JLT.2020.3040387

    [45] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).

    [46] P. Dong et al. Reconfigurable add-drop filter based on an antisymmetric multimode photonic crystal nanobeam cavity in a silicon waveguide. Opt. Express, 30, 17332-17339(2022).

    [47] A. Dideban, H. Habibiyan, H. Ghafoorifard. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low-Dimensional Syst. Nanostructures, 87, 77-83(2017).

    [48] C. Sun et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits, 51, 893-907(2016).

    [49] W. Zhao et al. 96-Channel on-chip reconfigurable optical add-drop multiplexer for multidimensional multiplexing systems. Nanophotonics, 11, 4299-4313(2022).

    [50] C. Zhang et al. Silicon photonic wavelength-selective switch based on an array of adiabatic elliptical-microrings. J. Light. Technol., 41, 5660-5667(2023).

    [51] D. Dai et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 12, 1700109(2018).

    [52] L. Jiang et al. Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators. J. Light. Technol., 36, 1713-1720(2018).

    [53] S. Liu, Y. Zheng, X. Chen. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett., 42, 3626-3629(2017).

    [54] D. A. B. Miller. Energy consumption in optical modulators for interconnects. Opt. Express, 20, A293-A308(2012).

    [55] Z. Yu et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).

    [56] T. Kobayashi et al. Coherent optical transceivers scaling and integration challenges. Proc. IEEE, 110, 1679-1698(2022).

    [57] E. Obrzud et al. Stability of lithium niobate integrated photonics in nonlinear and metrology applications, JW1A.167(2021).

    Hongxuan Liu, Bingcheng Pan, Huan Li, Zejie Yu, Liu Liu, Yaocheng Shi, Daoxin Dai, "First demonstration of lithium niobate photonic chip for dense wavelength-division multiplexing transmitters," Adv. Photon. 6, 066001 (2024)
    Download Citation