[1] A. H. Gnauck et al. High-capacity optical transmission systems. J. Light. Technol., 26, 1032-1045(2008).
[2] Y. Shi et al. Silicon photonics for high-capacity data communications. Photonics Res., 10, A106-A134(2022).
[3] Y. Su et al. Scalability of large-scale photonic integrated circuits. ACS Photonics, 10, 2020-2030(2023).
[4] Y. Huang et al. High-bandwidth Si/In2O3 hybrid plasmonic waveguide modulator. APL Photonics, 7, 051301(2022). https://doi.org/10.1063/5.0087540
[5] H. Ishio, J. Minowa, K. Nosu. Review and status of wavelength-division-multiplexing technology and its application. J. Light. Technol., 2, 448-463(1984).
[6] D. Dai, J. E. Bowers. Silicon-based on-chip multiplexing technologies and devices for peta-bit optical interconnects. Nanophotonics, 3, 283-311(2014).
[7] Y. Suzaki et al. Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput. IEEE J. Sel. Top. Quantum Electron., 11, 43-49(2005).
[8] S. Cheung et al. Demonstration of a 17 × 25 Gb/s heterogeneous III-V/Si DWDM transmitter based on (de-)interleaved quantum dot optical frequency combs. J. Light. Technol., 40, 6435-6443(2022).
[9] R. Nagarajan et al. Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 11, 50-65(2005).
[10] M. Moralis-Pegios et al. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly. Opt. Express, 28, 5706-5714(2020).
[11] C. Li et al. Hybrid WDM-MDM transmitter with an integrated Si modulator array and a micro-resonator comb source. Opt. Express, 29, 39847-39858(2021).
[12] Y. Yuan et al. A 5 × 200 Gbps microring modulator silicon chip empowered by two-segment Z-shape junctions. Nat. Commun., 15, 918(2024).
[13] C. Sun et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits, 51, 893-907(2016).
[14] J. Sharma et al. Silicon photonic microring-based 4 × 112 Gb/s WDM transmitter with photocurrent-based thermal control in 28-nm CMOS. IEEE J. Solid-State Circuits, 57, 1187-1198(2022).
[15] P.-H. Chang et al. A 3D integrated energy-efficient transceiver realized by direct bond interconnect of co-designed 12 nm FinFET and silicon photonic integrated circuits. J. Light. Technol., 41, 6741-6755(2023).
[16] Y. Wang et al. Silicon photonics chip I/O for ultra high-bandwidth and energy-efficient die-to-die connectivity, 1-8(2024).
[17] E. Andrianopoulos et al. Integrated 800 Gb/s O-band WDM optical transceiver enabled by hybrid InP-polymer photonic integration. J. Opt. Commun. Network, 16, D44-D52(2024).
[18] M. Levy et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett., 73, 2293-2295(1998).
[19] A. Boes et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photon. Rev., 12, 1700256(2018).
[20] D. Zhu et al. Integrated photonics on thin-film lithium niobate. Adv. Opt. Photonics, 13, 242-352(2021).
[21] M. Zhang et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica, 8, 652-657(2021).
[22] B. Pan et al. Perspective on lithium-niobate-on-insulator photonics utilizing the electro-optic and acousto-optic effects. ACS Photonics, 10, 2078-2090(2023).
[23] B. Pan et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength. Opt. Express, 29, 17710-17717(2021). https://doi.org/10.1364/OE.416908
[24] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).
[25] P. Kharel et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 8, 357-363(2021).
[26] G. Chen et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics, 7, 026103(2022).
[27] C. Wang et al. Nanophotonic lithium niobate electro-optic modulators. Opt. Express, 26, 1547-1555(2018).
[28] M. Li et al. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun., 11, 4123(2020).
[29] B. Pan et al. Compact electro-optic modulator on lithium niobate. Photonics Res., 10, 697-702(2022).
[30] B. Pan et al. Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz. Chip, 1, 100029(2022).
[31] Y. Xue et al. Breaking the bandwidth limit of a high-quality-factor ring modulator based on thin-film lithium niobate. Optica, 9, 1131-1137(2022).
[32] K. Chen et al. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform. J. Semicond., 43, 112301(2022).
[33] H. Liu et al. Ultra-compact lithium niobate photonic chip for high-capacity and energy-efficient wavelength-division-multiplexing transmitters. Light Adv. Manuf., 4, 133-142(2023).
[34] Q. Fang et al. WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability. Opt. Express, 18, 5106-5113(2010).
[35] S. Cheung et al. Ultra-compact silicon photonic 512 × 512 25 GHz arrayed waveguide grating router. IEEE J. Sel. Top. Quantum Electron., 20, 310-316(2014).
[36] D. Dai et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser Photon. Rev., 9, 339-344(2015).
[37] A. M. Prabhu et al. Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications. IEEE Photonics J., 2, 436-444(2010).
[38] T. Dai et al. Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators. Opt. Lett., 41, 4807(2016).
[39] D. Liu et al. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Light. Technol., 39, 5910-5916(2021).
[40] S. Robinson, R. Nakkeeran. Photonic crystal ring resonator-based add drop filters: a review. Opt. Eng., 52, 060901(2013).
[41] Z. Wang et al. On-chip arrayed waveguide grating fabricated on thin film lithium niobate(2023).
[42] Y. Yu et al. Wavelength-division multiplexing on an etchless lithium niobate integrated platform. ACS Photonics, 9, 3253-3259(2022).
[43] A. Pan et al. Fundamental mode hybridization in a thin film lithium niobate ridge waveguide. Opt. Express, 27, 35659-35669(2019).
[44] B. Pan et al. Compact racetrack resonator on LiNbO3. J. Light. Technol., 39, 1770-1776(2021). https://doi.org/10.1109/JLT.2020.3040387
[45] K. Luke et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Opt. Express, 28, 24452-24458(2020).
[46] P. Dong et al. Reconfigurable add-drop filter based on an antisymmetric multimode photonic crystal nanobeam cavity in a silicon waveguide. Opt. Express, 30, 17332-17339(2022).
[47] A. Dideban, H. Habibiyan, H. Ghafoorifard. Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low-Dimensional Syst. Nanostructures, 87, 77-83(2017).
[48] C. Sun et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits, 51, 893-907(2016).
[49] W. Zhao et al. 96-Channel on-chip reconfigurable optical add-drop multiplexer for multidimensional multiplexing systems. Nanophotonics, 11, 4299-4313(2022).
[50] C. Zhang et al. Silicon photonic wavelength-selective switch based on an array of adiabatic elliptical-microrings. J. Light. Technol., 41, 5660-5667(2023).
[51] D. Dai et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photon. Rev., 12, 1700109(2018).
[52] L. Jiang et al. Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators. J. Light. Technol., 36, 1713-1720(2018).
[53] S. Liu, Y. Zheng, X. Chen. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. Opt. Lett., 42, 3626-3629(2017).
[54] D. A. B. Miller. Energy consumption in optical modulators for interconnects. Opt. Express, 20, A293-A308(2012).
[55] Z. Yu et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum. Nat. Commun., 11, 2602(2020).
[56] T. Kobayashi et al. Coherent optical transceivers scaling and integration challenges. Proc. IEEE, 110, 1679-1698(2022).
[57] E. Obrzud et al. Stability of lithium niobate integrated photonics in nonlinear and metrology applications, JW1A.167(2021).