• Laser & Optoelectronics Progress
  • Vol. 56, Issue 16, 161101 (2019)
Ming Zhao*, Yu Wang, Zhiming Tian, and Meijing Zhao
Author Affiliations
  • College of Information Science Technology, Dalian Maritime University, Dalian, Liaoning 116026, China
  • show less
    DOI: 10.3788/LOP56.161101 Cite this Article Set citation alerts
    Ming Zhao, Yu Wang, Zhiming Tian, Meijing Zhao. Method of Push-Broom Underwater Ghost Imaging Computation[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161101 Copy Citation Text show less
    References

    [1] Lu M H, Shen X, Han S S. Ghost imaging via compressive sampling based on digital micromirror device[J]. Acta Optica Sinica, 31, 0711002(2011).

    [2] Zhou C, Huang H Y, Liu B et al. Hybrid speckle-pattern compressive computational ghost imaging[J]. Acta Optica Sinica, 36, 0911001(2016).

    [3] Liu S Y, Liu Z T, Wu J R et al. Hyperspectral camera based on ghost imaging via sparsity constraints with application of flat-field grating[J]. Acta Optica Sinica, 37, 0511004(2017).

    [4] Chen Y, Fan X, Cheng Y B et al. Compressive sensing ghost imaging based on neighbor similarity[J]. Acta Optica Sinica, 38, 0711001(2018).

    [5] Cheng J. Ghost imaging through turbulent atmosphere[J]. Optics Express, 17, 7916-7921(2009).

    [6] Zhang P L, Gong W L, Shen X et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 82, 033817(2010).

    [7] Erkmen B I. Computational ghost imaging for remote sensing[J]. Journal of the Optical Society of America A, 29, 782-789(2012).

    [8] Gong W L, Han S S. Correlated imaging in scattering media[J]. Optics Letters, 36, 394-396(2011).

    [9] Lü P, Zhou R K, He J H et al. Research on underwater single-pixel imaging system[J]. Journal of Optoelectronics·Laser, 22, 1425-1430(2011).

    [10] Lü P. Research of underwater imaging technology and image compression technology based on compressive sensing theory Xi'an: University of Chinese Academy of[D]. Sciences(2012).

    [11] Le M N, Wang G, Zheng H B et al. Underwater computational ghost imaging[J]. Optics Express, 25, 22859-22868(2017).

    [12] Zhao M, Uhlmann J, Lanzagorta M et al. Passive ghost imaging using caustics modeling[J]. Proceedings of SPIE, 10188, 101880H(2017).

    [13] Liu B L, Yang Z H, Qu S F et al. Influence of turbid media at different locations in computational ghost imaging[J]. Acta Optica Sinica, 36, 1026017(2016).

    [14] Ouyang B, Dalgleish F R, Caimi F M et al. Compressive line sensing underwater imaging system[J]. Optical Engineering, 53, 051409(2014).

    [15] Jin W Q, Wang X, Cao F M et al. Review of underwater opto-electrical imaging technology and equipment(Ⅱ)[J]. Infrared Technology, 33, 125-132(2011).

    [16] Baron D, Duarte M F, Sarvotham S et al. An information-theoretic approach to distributed compressed sensing. [C]∥43rd Conference on Communication, Control and Computing. [S.l.: s.n.], 24, 1537-1541(2005).

    [17] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 16, 2992-3004(2007).

    Ming Zhao, Yu Wang, Zhiming Tian, Meijing Zhao. Method of Push-Broom Underwater Ghost Imaging Computation[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161101
    Download Citation