• Matter and Radiation at Extremes
  • Vol. 5, Issue 1, 018401 (2020)
Joseph Nilsen1、*, Andrea L. Kritcher1, Madison E. Martin1, Robert E. Tipton1, Heather D. Whitley1, Damian C. Swift1, Tilo Döppner1, Benjamin L. Bachmann1, Amy E. Lazicki1, Natalie B. Kostinski1, Brian R. Maddox1, Gilbert W. Collins2, Siegfried H. Glenzer3, and Roger W. Falcone4
Author Affiliations
  • 1Lawrence Livermore National Laboratory, Livermore, California 94551, USA
  • 2University of Rochester, Rochester, New York 14627, USA
  • 3SLAC National Accelerator, Menlo Park, California 94025, USA
  • 4University of California Berkeley, Berkeley, California 94720, USA
  • show less
    DOI: 10.1063/1.5131748 Cite this Article
    Joseph Nilsen, Andrea L. Kritcher, Madison E. Martin, Robert E. Tipton, Heather D. Whitley, Damian C. Swift, Tilo Döppner, Benjamin L. Bachmann, Amy E. Lazicki, Natalie B. Kostinski, Brian R. Maddox, Gilbert W. Collins, Siegfried H. Glenzer, Roger W. Falcone. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum[J]. Matter and Radiation at Extremes, 2020, 5(1): 018401 Copy Citation Text show less
    References

    [1] L. Stixrude. Phys. Rev. Lett., 108, 055505(2012).

    [2] S. Seager et al. Astrophys. J., 669, 1279(2007).

    [3] V. E. Fortov. Extreme States of Matter on Earth and in the Cosmos, 224(2011).

    [4] H. J. Lee, R. W. Falcone, G. Collins, C. Keane, O. Jones, P. Neumayer, J. Hawreliak, D. Strozzi, B. Bachmann, D. Chapman, D. Kraus, C. Thomas, D. Swift, E. Dewald, J. Hammer, A. L. Kritcher, S. Felker, S. H. Glenzer, O. L. Landen, J. Nilsen, T. Döppner, S. Rothman. Probing matter at Gbar pressures at the NIF. High Energy Density Phys., 10, 27-34(2014).

    [5] D. Milathianaki, A. L. Kritcher, S. Hamel, M. J. MacDonald, J. Nilsen, S. Rothman, J. Hawreliak, E. Dewald, G. W. Collins, S. H. Glenzer, D. A. Chapman, A. MacPhee, L. X. Benedict, T. Döppner, D. Kraus, S. LePape, P. A. Sterne, D. C. Swift, R. Tommasini, D. E. Fratanduono, O. L. Landen, H. J. Lee, J. A. Gaffney, T. Ma, R. W. Falcone, P. Neumayer, B. Bachmann, M. Millot. Absolute equation-of-state measurements for polystyrene from 25 to 60 Mbar using a spherically converging shock wave. Phys. Rev. Lett., 121, 025001(2018).

    [6] G. W. Collins, J. Nilsen, S. Glenzer, A. Lazicki, B. Bachmann, R. W. Falcone, J. A. Hawreliak, A. MacPhee, S. D. Rothman, A. L. Kritcher, T. Döppner, D. Kraus, D. C. Swift. Absolute Hugoniot measurements from a spherically-convergent shock using x-ray radiography. Rev. Sci. Instrum., 89, 053505(2018).

    [7] High drive Gbar experiments are in the process of being analyzed and are not yet published

    [8] P. Celliers, G. Chiu, N. C. Holmes, R. J. Wallace, D. R. Bach, T. S. Perry, L. B. Da Silva, N. C. Woolsey, A. Ng, R. Cauble, G. W. Collins, B. A. Hammel, J. D. Kilkenny, T. W. Barbee, K. S. Budil. Absolute measurements of the equation of state of low-Z materials in the multi-Mbar regime using laser-driven shocks. Phys. Plasmas, 4, 1857-1861(1997).

    [9] M. Koenig, D. Batani, E. Henry, M. Tomasino, A. Benuzzi-Mounaix, T. Hall, F. Philippe. Optical properties of highly compressed polystyrene using laser-driven shockwaves. Phys. Plasmas, 10, 3026-3029(2003).

    [10] N. Ozaki et al. Shock Hugoniot and temperature data for polystyrene obtained with quartz standard. Phys. Plasmas, 16, 062702(2009).

    [11] D. G. Hicks, T. R. Boehly, D. E. Fratanduono, D. D. Meyerhofer, M. A. Barrios, G. W. Collins, P. M. Celliers, J. H. Eggert. High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves. Phys. Plasmas, 17, 056307(2010).

    [12] C. Wang, P. Zhang, X.-T. He. Thermophysical properties for shock compressed polystyrene. Phys. Plasmas, 18, 082707(2011).

    [13] S. Hamel et al. Equation of state of CH1.36: First-principles molecular dynamics simulations and shock-and-release wave speed measurements. Phys. Rev. B, 86, 094113(2012).

    [14] L. A. Collins, T. R. Boehly, S. X. Hu. Properties of warm dense polystyrene plasmas along the principal Hugoniot. Phys. Rev. E, 89, 063104(2014).

    [15] S. X. Hu, J. D. Kress, S. Skupsky, R. L. McCrory, V. N. Goncharov, L. A. Collins. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions. Phys. Rev. E, 92, 043104(2015).

    [16] G. Huser, R. Bolis, E. Brambrink, T. Plisson, T. Vinci, V. Recoules, G. Salin, P. Colin-Lalu. Dissociation along the principal Hugoniot of the laser megajoule ablator material. Phys. Rev. E, 94, 023204(2016).

    [17] P. A. Sterne, L. X. Benedict, K. P. Driver, S. Zhang, B. Militzer, F. Soubiran. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas. J. Chem. Phys., 148, 102318(2018).

    [18] M. Rosen et al. High Energy Density Phys., 7, 180-190(2011).

    [19] W. L. Kruer, G. B. Zimmerman. Comments Plasma Phys. Controlled Fusion, 2, 51-61(1975).

    [20] M. K. Nemanic, P. Nowak. Radiation transport calculations on unstructured grids using a spatially decomposed and threaded algorithm.

    [21] P. G. Maginot, P. F. Nowak, M. L. Adams. A review of the upstream corner balance spatial discretization. International Conference on Mathematics and Computational Methods, Applied to Nuclear Science and Engineering.

    Joseph Nilsen, Andrea L. Kritcher, Madison E. Martin, Robert E. Tipton, Heather D. Whitley, Damian C. Swift, Tilo Döppner, Benjamin L. Bachmann, Amy E. Lazicki, Natalie B. Kostinski, Brian R. Maddox, Gilbert W. Collins, Siegfried H. Glenzer, Roger W. Falcone. Understanding the effects of radiative preheat and self-emission from shock heating on equation of state measurement at 100s of Mbar using spherically converging shock waves in a NIF hohlraum[J]. Matter and Radiation at Extremes, 2020, 5(1): 018401
    Download Citation