• Infrared and Laser Engineering
  • Vol. 49, Issue 1, 103004 (2020)
Huang Zhiwei1、*, Wang Jianyuan2, Huang Wei2, Chen Songyan2, and Li Cheng2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla202049.0103004 Cite this Article
    Huang Zhiwei, Wang Jianyuan, Huang Wei, Chen Songyan, Li Cheng. Research progress of technologies for germanium near-infrared photodetectors[J]. Infrared and Laser Engineering, 2020, 49(1): 103004 Copy Citation Text show less
    References

    [1] Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform[J]. Photonics Research, 2017, 5(6): 702-709.

         Lin Y, Lee K H, Bao S, et al. High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform[J]. Photonics Research, 2017, 5(6): 702-709.

    [2] Dushaq G, Nayfeh A, Rasras M. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD[J]. Optics Express, 2017, 25(25): 32110-32119.

         Dushaq G, Nayfeh A, Rasras M. Metal-germanium-metal photodetector grown on silicon using low temperature RF-PECVD[J]. Optics Express, 2017, 25(25): 32110-32119.

    [3] Luo G, Yang T H, Chang E Y, et al. Growth of high-quality Ge epitaxial layers on Si (100) [J]. Japanese Journal of Applied Physics, 2003, 42(5B): L517.

         Luo G, Yang T H, Chang E Y, et al. Growth of high-quality Ge epitaxial layers on Si (100) [J]. Japanese Journal of Applied Physics, 2003, 42(5B): L517.

    [4] Wietler T F, Bugiel E, Hofmann K R. Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si (001) with low defect densities [J]. Applied Physics Letters, 2005, 87(18): 182102.

         Wietler T F, Bugiel E, Hofmann K R. Surfactant-mediated epitaxy of relaxed low-doped Ge films on Si (001) with low defect densities [J]. Applied Physics Letters, 2005, 87(18): 182102.

    [5] Park J S, Bai J, Curtin M, et al. Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping[J]. Applied Physics Letters, 2007, 90(5): 052113.

         Park J S, Bai J, Curtin M, et al. Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping[J]. Applied Physics Letters, 2007, 90(5): 052113.

    [6] Chen D, Xue Z, Wei X, et al. Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (1 0 0) by RPCVD[J]. Applied Surface Science, 2014, 299: 1-5

         Chen D, Xue Z, Wei X, et al. Ultralow temperature ramping rate of LT to HT for the growth of high quality Ge epilayer on Si (1 0 0) by RPCVD[J]. Applied Surface Science, 2014, 299: 1-5

    [7] Huang Z, Mao Y, Yi X, et al. Impacts of excimer laser annealing on Ge epilayer on Si[J]. Applied Physics A, 2017, 123(2): 148.

         Huang Z, Mao Y, Yi X, et al. Impacts of excimer laser annealing on Ge epilayer on Si[J]. Applied Physics A, 2017, 123(2): 148.

    [8] Ke S, Ye Y, Wu J, et al. Interface characteristics of different bonded structures fabricated by low-temperature a-Ge wafer bonding and the application of wafer-bonded Ge/Si photoelectric device [J]. Journal of Materials Science, 2019, 54(3): 2406-2416.

         Ke S, Ye Y, Wu J, et al. Interface characteristics of different bonded structures fabricated by low-temperature a-Ge wafer bonding and the application of wafer-bonded Ge/Si photoelectric device [J]. Journal of Materials Science, 2019, 54(3): 2406-2416.

    [9] Lai Shumei, Mao Danfeng, Chen Songyan, et al. Fabrication of germanium-on-insulator by smart-cut (TM) technology[J]. Journal of Nanjing University (Natural Sciences), 2017, 53(3): 441-449. (in Chinese)

         Lai Shumei, Mao Danfeng, Chen Songyan, et al. Fabrication of germanium-on-insulator by smart-cut (TM) technology[J]. Journal of Nanjing University (Natural Sciences), 2017, 53(3): 441-449. (in Chinese)

    [10] Sett S, Ghatak A, Sharma D, et al. Broad Band Single Germanium Nanowire Photodetectors with Surface Oxide-Controlled High Optical Gain [J]. The Journal of Physical Chemistry C, 2018, 122(15): 8564-8572.

         Sett S, Ghatak A, Sharma D, et al. Broad Band Single Germanium Nanowire Photodetectors with Surface Oxide-Controlled High Optical Gain [J]. The Journal of Physical Chemistry C, 2018, 122(15): 8564-8572.

    [11] Huang S, Lu W, Li C, et al. A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission [J]. Optics Express, 2013, 21(1): 640-646.

         Huang S, Lu W, Li C, et al. A CMOS-compatible approach to fabricate an ultra-thin germanium-on-insulator with large tensile strain for Si-based light emission [J]. Optics Express, 2013, 21(1): 640-646.

    [12] Lin G, Liang D, Wang J, et al. Strain evolution in SiGe-on-insulator fabricated by a modified germanium condensation technique with gradually reduced condensation temperature [J]. Materials Science in Semiconductor Processing, 2019, 97: 56-61.

         Lin G, Liang D, Wang J, et al. Strain evolution in SiGe-on-insulator fabricated by a modified germanium condensation technique with gradually reduced condensation temperature [J]. Materials Science in Semiconductor Processing, 2019, 97: 56-61.

    [13] Zhang L, Hong H, Wang Y, et al. Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate[J]. Chinese Physics B, 2017(11): 60.

         Zhang L, Hong H, Wang Y, et al. Formation of high-Sn content polycrystalline GeSn films by pulsed laser annealing on co-sputtered amorphous GeSn on Ge substrate[J]. Chinese Physics B, 2017(11): 60.

    [14] Wang Y, Zhang L, Huang Z, et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2018, 88: 28-34.

         Wang Y, Zhang L, Huang Z, et al. Crystallization of GeSn thin films deposited on Ge (100) substrate by magnetron sputtering[J]. Materials Science in Semiconductor Processing, 2018, 88: 28-34.

    [15] Chen N, Lin G, Zhang L, et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate[J]. Japanese Journal of Applied Physics, 2017, 56(5): 050301.

         Chen N, Lin G, Zhang L, et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate[J]. Japanese Journal of Applied Physics, 2017, 56(5): 050301.

    [16] Zhang L, Hong H, Li C, et al. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm [J]. Applied Physics Express, 2019, 12(5): 055504.

         Zhang L, Hong H, Li C, et al. High-Sn fraction GeSn quantum dots for Si-based light source at 1.55 μm [J]. Applied Physics Express, 2019, 12(5): 055504.

    [17] Wang C, Li C, Lin G, et al. Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing[J]. IEEE Transactions on Electron Devices, 2014, 61(9): 3060-3065.

         Wang C, Li C, Lin G, et al. Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing[J]. IEEE Transactions on Electron Devices, 2014, 61(9): 3060-3065.

    [18] Wang C, Li C, Wei J, et al. High-performance Ge pn photodiode achieved with preannealing and excimer laser annealing[J]. IEEE Photonics Technology Letters, 2015, 27(14): 1485-1488.

         Wang C, Li C, Wei J, et al. High-performance Ge pn photodiode achieved with preannealing and excimer laser annealing[J]. IEEE Photonics Technology Letters, 2015, 27(14): 1485-1488.

    [19] Mathiot D, Lachiq A, Slaoui A, et al. Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing[J]. Materials Science in Semiconductor Processing, 1998, 1(3-4): 231-236.

         Mathiot D, Lachiq A, Slaoui A, et al. Phosphorus diffusion from a spin-on doped glass (SOD) source during rapid thermal annealing[J]. Materials Science in Semiconductor Processing, 1998, 1(3-4): 231-236.

    [20] Boldrini V, Carturan S, Maggioni G, et al. Optimal process parameters for phosphorus spin-on-doping of germanium [J]. Applied Surface Science, 2017, 392(1): 1173-1180.

         Boldrini V, Carturan S, Maggioni G, et al. Optimal process parameters for phosphorus spin-on-doping of germanium [J]. Applied Surface Science, 2017, 392(1): 1173-1180.

    [21] Liang D, Lin G, Huang D, et al. Spin-on doping of phosphorus on Ge with a 9 nm amorphous Si capping layer to achieve n+/p shallow junctions through rapid thermal annealing[J]. Journal of Physics D: Applied Physics, 2019, 52(19): 195101.

         Liang D, Lin G, Huang D, et al. Spin-on doping of phosphorus on Ge with a 9 nm amorphous Si capping layer to achieve n+/p shallow junctions through rapid thermal annealing[J]. Journal of Physics D: Applied Physics, 2019, 52(19): 195101.

    [22] Wu Z, Huang W, Li C, et al. Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness[J]. IEEE Trans Electron Devices, 2012, 59(9): 1328.

         Wu Z, Huang W, Li C, et al. Modulation of Schottky barrier height of metal/TaN/n-Ge junctions by varying TaN thickness[J]. IEEE Trans Electron Devices, 2012, 59(9): 1328.

    [23] Wu Zheng, Wang Chen, Yan Guangmin, et al. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact [J]. Acta Physica Sinica, 2012, 61(18): 353-358. (in Chinese)

         Wu Zheng, Wang Chen, Yan Guangmin, et al. Improvement on performance of Si-based Ge PIN photodetector with Al/TaN electrode for n-type Ge contact [J]. Acta Physica Sinica, 2012, 61(18): 353-358. (in Chinese)

    [24] Wu H, Huang W, Lu W, et al. Ohmic contact to n-type Ge with compositional Ti nitride[J]. Applied Surface Science, 2013, 284: 877-880.

         Wu H, Huang W, Lu W, et al. Ohmic contact to n-type Ge with compositional Ti nitride[J]. Applied Surface Science, 2013, 284: 877-880.

    [25] Wu H, Wang C, Wei J, et al. Ohmic Contact to n-Type Ge with Compositional W Nitride [J]. IEEE Electron Device Letters, 2014, 35(12): 1188-1190.

         Wu H, Wang C, Wei J, et al. Ohmic Contact to n-Type Ge with Compositional W Nitride [J]. IEEE Electron Device Letters, 2014, 35(12): 1188-1190.

    [26] Liu H, Wang P, Qi D, et al. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height[J]. Applied Physics Letters, 2014, 105(19): 192103.

         Liu H, Wang P, Qi D, et al. Ohmic contact formation of metal/amorphous-Ge/n-Ge junctions with an anomalous modulation of Schottky barrier height[J]. Applied Physics Letters, 2014, 105(19): 192103.

    [27] Lai S, Mao D, Ruan Y, et al. Impact of nitrogen plasma passivation on the Al/n-Ge contact[J]. Materials Science and Engineering: B, 2016, 211: 178-184.

         Lai S, Mao D, Ruan Y, et al. Impact of nitrogen plasma passivation on the Al/n-Ge contact[J]. Materials Science and Engineering: B, 2016, 211: 178-184.

    [28] Huang Z, Li C, Lin G, et al. Suppressing the formation of GeOx by doping Sn into Ge to modulate the Schottky barrier height of metal/n-Ge contact[J]. Applied Physics Express, 2016, 9(2): 021301.

         Huang Z, Li C, Lin G, et al. Suppressing the formation of GeOx by doping Sn into Ge to modulate the Schottky barrier height of metal/n-Ge contact[J]. Applied Physics Express, 2016, 9(2): 021301.

    [29] Huang Z, Mao Y, Lin G, et al. Impacts of ITO interlayer thickness on metal/n-Ge contacts[J]. Materials Science and Engineering: B, 2017, 224: 103-109.

         Huang Z, Mao Y, Lin G, et al. Impacts of ITO interlayer thickness on metal/n-Ge contacts[J]. Materials Science and Engineering: B, 2017, 224: 103-109.

    [30] Huang Z, Mao Y, Chang A, et al. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800-1 650 nm detection[J]. Applied Physics Express, 2018, 11(10): 102203.

         Huang Z, Mao Y, Chang A, et al. Low-dark-current, high-responsivity indium-doped tin oxide/Au/n-Ge Schottky photodetectors for broadband 800-1 650 nm detection[J]. Applied Physics Express, 2018, 11(10): 102203.

    Huang Zhiwei, Wang Jianyuan, Huang Wei, Chen Songyan, Li Cheng. Research progress of technologies for germanium near-infrared photodetectors[J]. Infrared and Laser Engineering, 2020, 49(1): 103004
    Download Citation