• Photonics Research
  • Vol. 7, Issue 5, 508 (2019)
Xiu Liu1, Lijuan Wang2、3, Xuan Fang1、4, Taojie Zhou1, Guohong Xiang1, Boyuan Xiang1, Xueqing Chen1, Suikong Hark1, Hao Liang2、3, Shumin Wang2、5、6、*, and Zhaoyu Zhang1、7、*
Author Affiliations
  • 1School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Key Laboratory of Terahertz Solid-State Technology, Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology, CAS, Shanghai 200050, China
  • 4Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
  • 5Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg, Sweden
  • 6e-mail: shumin@mail.sim.ac.cn
  • 7e-mail: zhangzy@cuhk.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000508 Cite this Article Set citation alerts
    Xiu Liu, Lijuan Wang, Xuan Fang, Taojie Zhou, Guohong Xiang, Boyuan Xiang, Xueqing Chen, Suikong Hark, Hao Liang, Shumin Wang, Zhaoyu Zhang. Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41  μm[J]. Photonics Research, 2019, 7(5): 508 Copy Citation Text show less
    References

    [1] L. A. Coldren. Monolithic tunable diode lasers. IEEE J. Sel. Top. Quantum Electron., 6, 988-999(2000).

    [2] C. F. Lin, Y. S. Su, B. R. Wu. External-cavity semiconductor laser tunable from 1.3 to 1.54 μm for optical communication. IEEE Photon. Technol. Lett., 14, 3-5(2002).

    [3] S. Mokkapati, C. Jagadish. III-V compound SC for optoelectronic devices. Mater. Today, 12, 22-32(2009).

    [4] R. Wang, S. Sprengel, A. Vasiliev, G. Boehm, J. Van Campenhout, G. Lepage, P. Verheyen, R. Baets, M.-C. Amann, G. Roelkens. Widely tunable 23  μm III-V-on-silicon Vernier lasers for broadband spectroscopic sensing. Photon. Res., 6, 858-866(2018).

    [5] N. Zhang, X. Cai, S. Yu. Optical generation of tunable and narrow linewidth radio frequency signal based on mutual locking between integrated semiconductor lasers. Photon. Res., 2, B11-B17(2014).

    [6] S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte. Molecular beam epitaxy growth of GaAs1–xBix. Appl. Phys. Lett., 82, 2245-2247(2003).

    [7] K. K. Nagaraja, Y. A. Mityagin, M. P. Telenkov, I. P. Kazakov. GaAs(1-x)Bix: a promising material for optoelectronics applications. Crit. Rev. Solid State Mater. Sci., 42, 239-265(2017).

    [8] D. L. Young, J. F. Geisz, T. J. Coutts. Nitrogen-induced decrease of the electron effective mass in GaAs1-xNx thin films measured by thermomagnetic transport phenomena. Appl. Phys. Lett., 82, 1236-1238(2003).

    [9] S. M. Wang, G. Adolfsson, H. Zhao, Y. Q. Wei, J. Gustavsson, Q. X. Zhao, M. Sadeghi, A. Larsson. Growth of GaInNAs and 1.3  μm edge emitting lasers by molecular beam epitaxy. J. Cryst. Growth, 311, 1863-1867(2009).

    [10] P. Carrier, S.-H. Wei. Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: effects of p1/2 local orbitals and chemical trends. Phys. Rev. B, 70, 035212(2004).

    [11] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, T. Tiedje. Giant spin-orbit bowing in GaAs1–xBix. Phys. Rev. Lett., 97, 067205(2006).

    [12] L. Wang, L. Zhang, L. Yue, D. Liang, X. Chen, Y. Li, P. Lu, J. Shao, S. Wang. Novel dilute bismide, epitaxy, physical properties and device application. Crystals, 7, 63(2017).

    [13] M. C. Y. Huang, Y. Zhou, C. J. Chang-Hasnain. A nanoelectromechanical tunable laser. Nat. Photonics, 2, 180-184(2008).

    [14] C.-Z. Ning, L. Dou, P. Yang. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater., 2, 17070(2017).

    [15] M. T. Hill, M. C. Gather. Advances in small lasers. Nat. Photonics, 8, 908-918(2014).

    [16] S. H. Pan, S. S. Deka, A. E. Amili, Q. Gu, Y. Fainman. Nanolasers: second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Prog. Quantum Electron., 59, 1-18(2018).

    [17] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [18] N. H. Zhu, Z. Shi, Z. K. Zhang, Y. M. Zhang, C. W. Zou, Z. P. Zhao, Y. Liu, W. Li, M. Li. Directly modulated semiconductor lasers. IEEE J. Sel. Top. Quantum Electron., 24, 1-19(2018).

    [19] Z. Batool, S. Chatterjee, A. Chernikov, A. Duzik, R. Fritz, C. Gogineni, K. Hild, T. J. C. Hosea, S. Imhof, S. R. Johnson, Z. Jiang, S. Jin, M. Koch, S. W. Koch, K. Kolata, R. B. Lewis, X. Lu, M. Masnadi-Shirazi, J. M. Millunchick, P. M. Mooney, N. A. Riordan, O. Rubel, S. J. Sweeney, J. C. Thomas, A. Thränhardt, T. Tiedje, K. Volz. Bismuth-containing III–V semiconductors. Molecular Beam Epitaxy, 139-158(2013).

    [20] F. Hao, P. Nordlander, M. T. Burnett, S. A. Maier. Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys. Rev. B, 76, 245417(2007).

    [21] C. L. Yu, H. Kim, N. de Leon, I. W. Frank, J. T. Robinson, M. McCutcheon, M. Liu, M. D. Lukin, M. Loncar, H. Park. Stretchable photonic crystal cavity with wide frequency tunability. Nano Lett., 13, 248-252(2013).

    [22] X. Wu, W. Pan, Z. Zhang, Y. Li, C. Cao, J. Liu, L. Zhang, Y. Song, H. Ou, S. Wang. 1.142  μm GaAsBi/GaAs quantum well lasers grown by molecular beam epitaxy. ACS Photon., 4, 1322-1326(2017).

    [23] S. Francoeur, S. A. Nikishin, C. Jin, Y. Qiu, H. Temkin. Excitons bound to nitrogen clusters in GaAsN. Appl. Phys. Lett., 75, 1538-1540(1999).

    [24] V. V. Chaldyshev, A. L. Kolesnikova, N. A. Bert, A. E. Romanov. Investigation of dislocation loops associated with AsSb nanoclusters in GaAs. J. Appl. Phys., 97, 024309(2005).

    [25] D. F. Reyes, J. M. Ulloa, A. Guzman, A. Hierro, D. L. Sales, R. Beanland, A. M. Sanchez, D. González. Effect of annealing in the Sb and In distribution of type II GaAsSb capped InAs quantum dots. Semicond. Sci. Technol., 30, 114006(2015).

    [26] Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, A. Scherer. Visible submicron microdisk lasers. Appl. Phys. Lett., 90, 111119(2007).

    [27] T. Zhou, J. Zhou, Y. Cui, X. Liu, J. Li, K. He, X. Fang, Z. Zhang. Microscale local strain gauges based on visible micro-disk lasers embedded in a flexible substrate. Opt. Express, 26, 16797-16804(2018).

    [28] T. Zhou, X. Liu, Y. Cui, Y. Cheng, X. Fang, W. Zhang, B. Xiang, Z. Zhang. Cantilever-based microring lasers embedded in a deformable substrate for local strain gauges. AIP Adv., 8, 075306(2018).

    [29] K. Yamashita, M. Yoshimoto, K. Oe. Temperature-insensitive refractive index of GaAsBi alloy for laser diode in WDM optical communication. Phys. Status Solidi C, 3, 693-696(2006).

    [30] Q. Gu, Y. Fainman. Semiconductor Nanolasers(2017).

    [31] S. L. Chuang. Physics of Photonic Devices(2009).

    [32] B. E. A. Saleh. Fundamentals of Photonics(2007).

    [33] Y. Tominaga, K. Oe, M. Yoshimoto. Low temperature dependence of oscillation wavelength in GaAs1−xBix laser by photo-pumping. Appl. Phys. Express, 3, 062201(2010).

    [34] T. Fuyuki, R. Yoshioka, K. Yoshida, M. Yoshimoto. Long-wavelength emission in photo-pumped GaAs1−xBix laser with low temperature dependence of lasing wavelength. Appl. Phys. Lett., 103, 202105(2013).

    [35] P. Ludewig, N. Knaub, N. Hossain, S. Reinhard, L. Nattermann, I. P. Marko, S. R. Jin, K. Hild, S. Chatterjee, W. Stolz, S. J. Sweeney, K. Volz. Electrical injection Ga(AsBi)/(AlGa)As single quantum well laser. Appl. Phys. Lett., 102, 242115(2013).

    [36] R. Butkutė, A. Geizutis, V. Paccebutas, B. Cechaviccius, V. Bukauskas, R. Kundrotas, P. Ludewig, K. Volz, A. Krotkus. Multi-quantum well Ga(AsBi)/GaAs laser diodes with more than 6% of bismuth. Electron. Lett., 50, 1155-1157(2014).

    [37] T. Fuyuki, K. Yoshida, R. Yoshioka, M. Yoshimoto. Electrically pumped room-temperature operation of GaAs1−xBix laser diodes with low-temperature dependence of oscillation wavelength. Appl. Phys. Express, 7, 082101(2014).

    [38] H. Kim, Y. Guan, S. E. Babcock, T. F. Kuech, L. J. Mawst. Characteristics of OMVPE grown GaAsBi QW lasers and impact of post-growth thermal annealing. J. Appl. Phys., 123, 113102(2018).

    Xiu Liu, Lijuan Wang, Xuan Fang, Taojie Zhou, Guohong Xiang, Boyuan Xiang, Xueqing Chen, Suikong Hark, Hao Liang, Shumin Wang, Zhaoyu Zhang. Continuous wave operation of GaAsBi microdisk lasers at room temperature with large wavelengths ranging from 1.27 to 1.41  μm[J]. Photonics Research, 2019, 7(5): 508
    Download Citation