• Photonic Sensors
  • Vol. 13, Issue 1, 230120 (2023)
Linqing ZHUO1, Jieyuan TANG2, Wenguo ZHU3, Huadan ZHENG2, Heyuan GUAN1、2, Huihui LU1、3, Yaofei CHEN2、3, Yunhan LUO1、2, Jun ZHANG1, Yongchun ZHONG3, Jianhui YU1, and and Zhe CHEN2、3、*
Author Affiliations
  • 1Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
  • 2Engineering Research Center on Visible Light Communication of Guangdong Province, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
  • 3Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
  • show less
    DOI: 10.1007/s13320-022-0661-x Cite this Article
    Linqing ZHUO, Jieyuan TANG, Wenguo ZHU, Huadan ZHENG, Heyuan GUAN, Huihui LU, Yaofei CHEN, Yunhan LUO, Jun ZHANG, Yongchun ZHONG, Jianhui YU, and Zhe CHEN. Side Polished Fiber: A Versatile Platform for Compact Fiber Devices and Sensors[J]. Photonic Sensors, 2023, 13(1): 230120 Copy Citation Text show less
    References

    [1] J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics, 2010, 4(1): 37-40.

    [2] P. Sibson, J. E. Kennard, S. Stanisic, C. Erven, J. L. O’Brien, and M. G. Thompson, “Integrated silicon photonics for high-speed quantum key distribution,” Optica, 2017, 4(2): 172-177.

    [3] M. J. Paniccia, “A perfect marriage: optics and silicon: integrated silicon-based photonics now running at 50 Ggps, with terabit speeds on the horizon,” Optik & Photonik, 2011, 6(2): 34-38.

    [4] M. Consales, A. Ricciardi, A. Crescitelli, E. Esposito, A. Cutolo, and A. Cusano, “Lab-on-fiber technology: toward multifunctional optical nanoprobes,” ACS Nano, 2012, 6(4): 3163-3170.

    [5] M. Consales, M. Pisco, and A. Cusano, “Lab-on-fiber technology: a new avenue for optical nanosensors,” Photonic Sensors, 2012, 2(4): 289-314.

    [6] A. Ricciardi, A. Crescitelli, P. Vaiano, G. Quero, M. Consales, M. Pisco, et al., “Lab-on-fiber technology: a new vision for chemical and biological sensing,” Analyst, 2015, 140(24): 8068-8079.

    [7] A. O. Dikovska, G. Atanasova, N. Nedyalkov, P. Stefanov, P. Atanasov, E. Karakoleva, et al., “Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber,” Sensors and Actuators B: Chemical, 2010, 146(1): 331-336.

    [8] J. Zhao, S. Cao, C. Liao, Y. Wang, G. Wang, X. Xu, et al., “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sensors and Actuators B: Chemical, 2016, 230: 206-211.

    [9] Z. Jiang, J. Dong, S. Hu, Y. Zhang, Y. Chen, Y. Luo, et al., “High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid,” Optics Letters, 2018, 43(19): 4743-4746.

    [10] L. Dong, X. Liu, Y. Zhang, L. Zhuo, D. Li, W. Zhu, et al., “All-fiber multifunctional electrooptic prototype device with a graphene/PMMA (poly (methyl methacrylate)) hybrid film integrated on coreless side-polished fibers,” ACS Applied Electronic Materials, 2020, 2(2): 447-455.

    [11] L. Zhuo, P. Fan, S. Zhang, X. Liu, X. Guo, Y. Zhang, et al., “A broadband all-fiber integrated graphene photodetector with CNT-enhanced responsivity,” Nanoscale, 2020, 12(26): 14188-14193.

    [12] S. Masuda and T. Iwama, “Single-mode fiber-optic directional coupler,” Applied Optics, 1982, 21(19): 3484-3488.

    [13] S. M. Tseng and C. L. Chen, “Side-polished fibers,” Applied Optics, 1992, 31(18): 3438-3447.

    [14] L. Pei, R. Zhao, T. Ning, C. Qi, and J. Li, “Key technologies for side-grinding optical fiber with long length and high precision and their applications,” Infrared and Laser Engineering, 2010, 1: 86-90.

    [15] A. O. Dikovska, P. Atanasov, A. T. Andreev, B. Zafirova, E. Karakoleva, and T. Stoyanchov, “ZnO thin film on side polished optical fiber for gas sensing applications,” Applied Surface Science, 2007, 254(4): 1087-1090.

    [16] S. S. Lee, H. D. Chae, D. H. Kim, H. J. Kim, and K. T. Kim, “Continuous photonic microwave true-time delay using a side-polished fiber Bragg grating with heating electrode,” Microwave and Optical Technology Letters, 2005, 44(1): 35-37.

    [17] C. Hussey and J. Minelly, “Optical fibre polishing with a motor-driven polishing wheel,” Electronics Letters, 1988, 24(13): 805-807.

    [18] N. A. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. Zakaria, “Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor,” Results in Physics, 2019, 13: 102255.

    [19] J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, et al., “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 238-245.

    [20] R. King, F. Seng, N. Stan, K. Cuzner, C. Josephson, R. Selfridge, et al., “Slab-coupled optical sensor fabrication using side-polished Panda fibers,” Applied Optics, 2016, 55(31): 8848-8854.

    [21] J. Dong, Y. Zhang, Y. Wang, F. Yang, S. Hu, Y. Chen, et al., “Side-polished few-mode fiber based surface plasmon resonance biosensor,” Optics Express, 2019, 27(8): 11348-11360.

    [22] L. Bilro, N. J. Alberto, L. M. Sá, J. de Lemos Pinto, and R. Nogueira, “Analytical analysis of side-polished plastic optical fiber as curvature and refractive index sensor,” Journal of Lightwave Technology, 2011, 29(6): 864-870.

    [23] M. Cordaro, D. L. Rode, T. Barry, and R. R. Krchnavek, “Precision fabrication of D-shaped single-mode optical fibers by in situ monitoring,” Journal of Lightwave Technology, 1994, 12(9): 1524-1531.

    [24] H. Ahmad, H. Hassan, A. Zulkifli, K. Thambiratnam, and I. Amiri, “Characterization of arc-shaped side-polished fiber,” Optical and Quantum Electronics, 2017, 49(6): 207.

    [25] J. Zhao, G. Yin, C. Liao, S. Liu, J. He, B. Sun, et al., “Rough side-polished fiber with surface scratches for sensing applications,” IEEE Photonics Journal, 2015, 7(3): 1-7.

    [26] Y. Xiao, Z. Chen, L. Zhang, J. Zhang, J. Qin, and H. Pan, “All fiber online optical power monitor based on side-polished fiber,” Journal of Applied Optics, 2010, 31(4): 620-625.

    [27] Z. Chen and C. Bai, “Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing,” in 2008 1st Asia-Pacific Optical Fiber Sensors Conference, China, 2008, pp. 1-4.

    [28] H. Dong, L. Chen, J. Zhou, J. Yu, H. Guan, W. Qiu, et al., “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Optics Express, 2017, 25(5): 5352-5365.

    [29] M. J. Digonnet, J. Feth, L. F. Stokes, and H. J. Shaw, “Measurement of the core proximity in polished fiber substrates and couplers,” Optics Letters, 1985, 10(9): 463-465.

    [30] C. He, J. Fang, Y. Zhang, Y. Yang, J. Yu, J. Zhang, et al., “High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane,” Optics Express, 2018, 26(8): 9686-9699.

    [31] C. Bai, Y. Luo, Z. Chen, X. Chen, M. Xu, and J. Tang, “Characteristics of side-polished fiber in refractive index sensing,” Acta Photonica Sinica, 2013, 42(10): 1182.

    [32] C. Bai, Z. Chen, F. Li, Y. Zhang, Y. Zeng, and L. Liu, “Experimental investigations of transmitting optical power in side-polished fiber,” Acta Photonica Sinica, 2007, 36(6): 1068.

    [33] Y. Xiao, J. Zhang, J. Yu, H. Dong, Y. Wei, Y. Luo, et al., “Theoretical investigation of optical modulators based on graphene-coated side-polished fiber,” Optics Express, 2018, 26(11): 13759-13772.

    [34] J. Tang, J. Zhou, J. Guan, S. Long, J. Yu, H. Guan, et al., “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 238-245.

    [35] G. Mu, Y. Liu, Q. Qin, Z. Tan, G. Li, M. Wang, et al., “Refractive index sensing based on the analysis of D-shaped multimode fiber specklegrams,” IEEE Photonics Technology Letters, 2020, 32(8): 485-488.

    [36] M. Yang, H. Liu, D. Zhang, and X. Tong, “Hydrogen sensing performance comparison of Pd layer and Pd/WO3 composite thin film coated on side-polished single-and multimode fibers,” Sensors and Actuators B: Chemical, 2010, 149(1): 161-164.

    [37] R. Ranjan, F. Esposito, S. Campopiano, and A. Iadicicco, “Sensing characteristics of arc-induced long period gratings in polarization-maintaining panda fiber,” IEEE Sensors Journal, 2017, 17(21): 6953-6959.

    [38] W. Zheng, “Automated fusion-splicing of polarization maintaining fibers,” Journal of Lightwave Technology, 1997, 15(1): 125-134.

    [39] D. Wang, C. Liu, X. Shu, X. Mou, and G. Yang, “Accurate alignment of PM fiber,” Acta Photonica Sinica, 2002, 31(3): 345.

    [40] Z. Liu, D. Feng, H. Huang, D. Yang, and N. Song, “Automatic aligning method of panda polarization maintaining fiber with high accuracy,” Acta Photonica Sinica, 2015, 44(2): 206004.

    [41] K. Itoh, N. Yoshinuma, N. Suzuji, T. Yamada, and H. Taya, “Method of fusion-splicing polarization maintaining optical fibers,” U.S. Patent 5 013 345, May 7, 1991.

    [42] J. Wang, Z. Lin, Y. Wu, and S. Li, “The auto-alignment technique of PM fiber of MRI,” Journal of Applied Optics, 2005, 26(5): 37-40.

    [43] S. Chen, “Azimuthal alignment method for PM fiber based on light intensity distributions with five finger profile,” Applied Laser, 2006, 26(1): 35-38.

    [44] L. Huang, J. Zhang, Z. Chen, and S. Chen, “Simulation and experiments analysis of azimuth aligning technology for polarization maintaining fiber,” Infrared and Laser Engineering, 2010, 2: 279-284.

    [45] K. T. Kim, D. S. Yoon, and G. Kwoen, “Optical properties of side-polished polarization maintaining fiber coupled with a high index planar waveguide,” Optics Communications, 2004, 230(1-3): 137-144.

    [46] G. Du, “Experimental research on F-P cavity Raman fiber laser,” Acta Photonica Sinica, 2004, 33(9): 1151.

    [47] M. Piliarik, J. Homola, Z. Maniková, and J. Ctyroky, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber” Sensors and Actuators B: Chemical, 2003, 90(1-3): 236-242.

    [48] T. Wu, Z. Liu, H. Zhang, Z. Yang, D. Yang, and Y. Wang, “Investigation of side-polished panda fibers for strain measurement and surface plasmon resonance-based biochemical sensing,” in 2020 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), China, 2020, pp. 1334-1341.

    [49] W. Zhu, S. Long, Z. Gan, Y. Luo, Y. Ma, H. Guan, et al., “Optimization of polishing parameters for optical coupler based on side-polished photonic crystal fiber,” Optical and Quantum Electronics, 2017, 49(2): 81.

    [50] T. Wu, Y. Shao, Y. Wang, S. Cao, W. Cao, F. Zhang, et al., “Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber,” Optics Express, 2017, 25(17): 20313-20322.

    [51] N. Zhang, G. Humbert, Z. Wu, K. Li, P. P. Shum, N. M. Y. Zhang, et al., “In-line optofluidic refractive index sensing in a side-channel photonic crystal fiber,” Optics Express, 2016, 24(24): 27674-27682.

    [52] J. N. Dash and R. Jha, “Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR,” Plasmonics, 2016, 11(6): 1505-1509.

    [53] D. Li, S. Pu, Y. Zhao, Y. Li, Z. Hao, and Z. Han, “Sensing properties of symmetrical side-polished photonic crystal fiber based on surface plasmon resonance,” Optik, 2020, 224: 165662.

    [54] X. He, Z. Chen, J. Yu, Y. Zeng, Y. Luo, J. Zhang, et al., “Numerical analysis of optical propagation characteristics of side-polished photonics crystal fiber,” Optical and Quantum Electronics, 2014, 46(10): 1261-1268.

    [55] Z. Naqvi, M. Green, C. Wang, and T. H. Her, “Characterization of Bragg fibers by Mie scattering,” CLEO: Applications and Technology, 2016, DOI: 10.1364/CLEO_AT.2016.JTu5A.112.

    [56] P. Yan, J. Zhao, S. Ruan, J. Zhao, G. Du, H. Wei, et al., “Improved large-mode-area Bragg fiber,” Chinese Optics Letters, 2011, 9(6): 060603.

    [57] L. Shi, W. Zhang, J. Jin, Y. Huang, and J. Peng, “Hollow-core Bragg fiber and its application in trace gas sensing,” in Asia Communications and Photonics Conference and Exhibition, America, 2010, pp. 799008.

    [58] J. Jiang, G. M. Ma, C. R. Li, H. T. Song, Y. T. Luo, and H. B. Wang, “Highly sensitive dissolved hydrogen sensor based on side-polished fiber Bragg grating,” IEEE Photonics Technology Letters, 2015, 27(13): 1453-1456.

    [59] M. Yang, J. Dai, X. Li, and J. Wang, “Side-polished fiber Bragg grating refractive index sensor with TbFeCo magnetoptic thin film,” Journal of Applied Physics, 2010, 108(3): 033102.

    [60] Y. Ying, R. Zhang, G. Y. Si, X. Wang, and Y. W. Qi, “D-shaped tilted fiber Bragg grating using magnetic fluid for magnetic field sensor,” Optics Communications, 2017, 405: 228-232.

    [61] N. Jing, J. Zheng, X. Zhao, and C. Teng, “Refractive index sensing based on a side-polished macrobending plastic optical fiber,” IEEE Sensors Journal, 2014, 15(5): 2898-2901.

    [62] L. Bilro, N. Alberto, J. L. Pinto, and R. Nogueira, “Optical sensors based on plastic fibers,” Sensors, 2012, 12(9): 12184-12207.

    [63] P. Stajanca, O. Cetinkaya, M. Schukar, P. Mergo, D. J. Webb, and K. Krebber, “Molecular alignment relaxation in polymer optical fibers for sensing applications,” Optical Fiber Technology, 2016, 28: 11-17.

    [64] Y. Wakayama, J. Ko, N. Yoshikane, and T. Tsuritani, “Pure-silica single-core to multi-core fiber coupler with side-polishing approach,” in 2020 Opto-Electronics and Communications Conference (OECC), China, 2020, pp. 1-3.

    [65] Y. Bo, C. Guan, R. Chu, T. Cheng, L. Xu, and L. Liu, “Compact all-fiber thermo-optic modulator based on a Michelson interferometer coated with NaNdF4 nanoparticles,” Optics Express, 2021, 29(5): 6854-6862.

    [66] R. Chu, C. Guan, Y. Bo, J. Liu, J. Shi, J. Yang, et al., “Graphene decorated twin-core fiber Michelson interferometer for all-optical phase shifter and switch,” Optics Letters, 2020, 45(1): 177-180.

    [67] J. Yang, C. Guan, Z. Yu, M. Yang, J. Shi, P. Wang, et al., “High sensitivity humidity sensor based on gelatin coated side-polished in-fiber directional coupler,” Sensors and Actuators B: Chemical, 2020, 305: 127555.

    [68] I. Yokohama, J. Noda, and K. Okamoto, “Fiber-coupler fabrication with automatic fusion-elongation processes for low excess loss and high coupling-ratio accuracy,” Journal of Lightwave Technology, 1987, 5(7): 910-915.

    [69] M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andres, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sensors Journal, 2016, 17(2): 333-339.

    [70] K. Zhang, P. Wu, J. Dong, D. Du, Z. Yang, C. Xu, et al., “Broadband mode-selective couplers based on tapered side-polished fibers,” Optics Express, 2021, 29(13): 19690-19702.

    [71] H. Kim, J. Kim, U. C. Paek, B. H. Lee, and K. T. Kim, “Tunable photonic crystal fiber coupler based on a side-polishing technique,” Optics Letters, 2004, 29(11): 1194-1196.

    [72] Y. Luo, Q. Wei, Y. Ma, H. Lu, J. Yu, J. Tang, et al., “Side-polished-fiber based optical coupler assisted with a fused nano silica film,” Applied Optics, 2015, 54(7): 1598-1605.

    [73] V. R. K. Kumar, A. George, W. Reeves, J. Knight, P. S. J. Russell, F. Omenetto, et al., “Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation,” Optics Express, 2002, 10(25): 1520-1525.

    [74] B. H. Almewafy, N. F. Areed, M. F. O. Hameed, and S. S. Obayya, “Modified D-shaped SPR PCF polarization filter at telecommunication wavelengths,” Optical and Quantum Electronics, 2019, 51(6): 1-14.

    [75] R. Wu, H. Chen, S. Zhang, H. Fu, Z. Luo, L. Zhang, et al., “Tunable and selectable multipassband microwave photonic filter utilizing reflective and cascaded fiber Mach-Zehnder interferometers,” Journal of Lightwave Technology, 2017, 35(13): 2660-2668.

    [76] J. Yu, Y. Han, H. Huang, H. Li, V.K. Hsiao, W. Liu, et al., “All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter,” Optics Express, 2014, 22(5): 5950-5961.

    [77] J. L. Archambault, P. S. J. Russell, S. Barcelos, P. Hua, and L. Reekie, “Novel channel-dropping filter by grating-frustrated coupling in single-mode optical fiber,” in Optical Fiber Communication Conference, America, 1994, pp. TuL5.

    [78] R. Lausten, P. Rochon, M. Ivanov, P. Cheben, S. Janz, P. Desjardins, et al., “Optically reconfigurable azobenzene polymer-based fiber Bragg filter,” Applied Optics, 2005, 44(33): 7039-7042.

    [79] J. Yu, S. Jin, Q. Wei, Z. Zang, H. Lu, X. He, et al., “Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber,” Scientific Reports, 2015, 5(1): 1-6.

    [80] T. Sherwood, A. C. Young, J. Takayesu, A. K. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photonics Technology Letters, 2005, 17(10): 2107-2109.

    [81] L. Shi, Q. Wang, and T. Zhu, “A fiber-attached coupler for transmission bandpass whispering gallery mode resonator,” Journal of Lightwave Technology, 2021, 39(8): 2454-2459.

    [82] L. Shi, T. Zhu, D. Huang, M. Liu, M. Deng, and W. Huang, “In-fiber whispering-gallery-mode resonator fabricated by femtosecond laser micromachining,” Optics Letters, 2015, 40(16): 3770-3773.

    [83] T. Sherwood, A. C. Young, J. Takayesu, A. K. Y. Jen, L. R. Dalton, and A. Chen, “Microring resonators on side-polished optical fiber,” IEEE Photonics Technology Letters, 2005, 17(10): 2107-2109.

    [84] L. Shi, Q. Wang, L. Jiang, Q. Gao, and T. Zhu, “In-fiber butt-coupled spherical microcavity with whispering gallery mode and Fabry-Perot resonances,” IEEE Photonics Technology Letters, 2021, 33(11): 553-556.

    [85] S. Lee, J. Sokoloff, B. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a birefringent polymer overlay,” Optics Letters, 1997, 22(9): 606-608.

    [86] X. Wang, J. Lin, W. Sun, Z. Tan, R. Liu, and Z. Wang, “Polarization selectivity of the thin-metal-film plasmon-assisted fiber-optic polarizer,” ACS Applied Materials & Interfaces, 2020, 12(28): 32189-32196.

    [87] R. A. Bergh, H. C. Lefevre, and H. J. Shaw, “Single-mode fiber-optic polarizer,” Optics Letters, 1980, 5(11): 479-481.

    [88] M. Heidari, V. Faramarzi, Z. Sharifi, M. Hashemi, S. Bahadori-Haghighi, B. Janjan, et al., “A high-performance TE modulator/TM-pass polarizer using selective mode shaping in a VO2-based side-polished fiber,” Nanophotonics, 2021, 10(13): 3451-3463.

    [89] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Lim, Y. Wang, et al., “Broadband graphene polarizer,” Nature Photonics, 2011, 5(7): 411-415.

    [90] R. Chu, C. Guan, J. Yang, Z. Zhu, P. Li, J. Shi, et al., “High extinction ratio D-shaped fiber polarizers coated by a double graphene/PMMA stack,” Optics Express, 2017, 25(12): 13278-13285.

    [91] W. Li, L. Yi, R. Zheng, Z. Ni, and W. Hu, “Fabrication and application of a graphene polarizer with strong saturable absorption,” Photonics Research, 2016, 4(2): 41-44.

    [92] L. Zhuo, D. Li, W. Chen, Y. Zhang, W. Zhang, Z. Lin, et al., “High performance multifunction-in-one optoelectronic device by integrating graphene/MoS2 heterostructures on side-polished fiber,” Nanophotonics, 2022, DOI: 10.1515/nanoph-2021-0688.

    [93] J. Zhao, Y. Ma, and R. Li, “Characterization of polarizer made of the deep-UV birefringent crystal Ba2Mg(B3O6)2,” Applied Optics, 2015, 54(33): 9949-9953.

    [94] A. Dudus, R. Blue, M. Zagnoni, G. Stewart, and D. Uttamchandani, “Modeling and characterization of an electrowetting-based single-mode fiber variable optical attenuator,” IEEE Journal of Selected Topics in Quantum Electronics, 2014, 21(4): 253-261.

    [95] V. K. Hsiao, Z. Li, Z. Chen, P. C. Peng, and J. Tang, “Optically controllable side-polished fiber attenuator with photoresponsive liquid crystal overlay,” Optics Express, 2009, 17(22): 19988-19995.

    [96] T. Martins, B. Gholipour, D. Piccinotti, K. F. MacDonald, A. C. Peacock, O. Frazao, et al., “Fiber-integrated phase-change reconfigurable optical attenuator,” APL Photonics, 2019, 4(11): 111301.

    [97] H. Knape and W. Margulis, “All-fiber polarization switch,” Optics Letters, 2007, 32(6): 614-616.

    [98] L. Fang and J. Wang, “All-fiber polarization beam splitting and rotating based on vector-mode-assisted coupling,” Optics Express, 2018, 26(12): 15124-15137.

    [99] V. K. Hsiao, W. H. Fu, C. Y. Huang, Z. Chen, S. Li, J. Yu, et al., “Optically switchable all-fiber optic polarization rotator,” Optics Communications, 2012, 285(6): 1155-1158.

    [100] S. C. Wen, C. W. Chang, C. M. Lin, H. Liu, V. K. Hsiao, J. Yu, et al., “Light-induced switching of a chalcogenide-coated side-polished fiber device,” Optics Communications, 2015, 334: 110-114.

    [101] L. Zhuo, P. Fan, S. Zhang, Y. Zhan, Y. Lin, Y. Zhang, et al., “High-performance fiber-integrated multifunctional graphene-optoelectronic device with photoelectric detection and optic-phase modulation,” Photonics Research, 2020, 8(12): 1949-1957.

    [102] Y. Wang, H. Liu, Y. Wang, W. Qiu, J. Zhang, Z. Tian, et al., “Side polished fiber with coated graphene sheet and its control characteristic of violet light,” Optical Materials Express, 2016, 6(6): 2088-2094.

    [103] E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, et al., “Active control of all-fibre graphene devices with electrical gating,” Nature Communications, 2015, 6(1): 1-6.

    [104] Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, et al., “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Applied Materials & Interfaces, 2018, 10(42): 36304-36311.

    [105] Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, et al., “Broadband high photoresponse from pure monolayer graphene photodetector,” Nature Communications, 2013, 4(1): 1-11.

    [106] S. Cakmakyapan, P. K. Lu, A. Navabi, and M. Jarrahi, “Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime,” Light: Science & Applications, 2018, 7(1): 1-9.

    [107] Y. Liu, Q. Xia, J. He, and Z. Liu, “Direct observation of high photoresponsivity in pure graphene photodetectors,” Nanoscale Research Letters, 2017, 12(1): 1-8.

    [108] H. Dong, J. Yu, H. Guan, W. Qiu, J. Dong, H. Lu, et al., “Coreless side-polished fiber for multimode interference and highly sensitive refractive index sensing,” Optics Express, 2017, 25(5): 5352-5365.

    [109] J. Lu, Y. Li, Y. Han, Y. Liu, and J. Gao, “D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating,” Applied Optics, 2018, 57(19): 5268-5272.

    [110] J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Applied Optics, 2018, 57(15): 4002-4007.

    [111] P. O. Patil, G. R. Pandey, A. G. Patil, V. B. Borse, P. K. Deshmukh, D. R. Patil, et al., “Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: a review,” Biosensors and Bioelectronics, 2019, 139: 111324.

    [112] M. Yang, S. Long, W. Zhu, Y. Luo, P. Mao, J. Tang, et al., “Design and optimization of nano-column array based surface plasmon resonance sensor,” Optical and Quantum Electronics, 2017, 49(1): 1-7.

    [113] L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Optics Express, 2008, 16(17): 13349-13353.

    [114] T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, et al., “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Optics Express, 2017, 25(9): 9823-9833.

    [115] A. Tripathy, S. Pramanik, J. Cho, and J. Santhosh, and N. A. A. Osman, “Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors,” Sensors, 2014, 14(9): 16343-16422.

    [116] Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, et al., “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sensors and Actuators B: Chemical, 2018, 255: 57-69.

    [117] L. Tang, Y. Feng, Z. Xing, Z. Chen, J. Yu, H. Guan, et al., “High-sensitivity humidity sensing of side-polished optical fiber with polymer nanostructure cladding,” Applied Optics, 2018, 57(10): 2539-2544.

    [118] Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, et al., “Tungsten disulfide (WS2) based all-fiber-optic humidity sensor,” Optics Express, 2016, 24(8): 8956-8966.

    [119] D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, et al., “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Optics Express, 2017, 25(23): 28407-28416.

    [120] H. Zhang, S. Gao, Y. Luo, Z. Chen, S. Xiong, L. Wan, et al., “Ultrasensitive Mach-Zehnder interferometric temperature sensor based on liquid-filled D-shaped fiber cavity,” Sensors, 2018, 18(4): 1239.

    [121] H. Lu, Z. Tian, H. Yu, B. Yang, G. Jing, G. Liao, et al., “Optical fiber with nanostructured cladding of TiO2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing,” Optics Express, 2014, 22(26): 32502-32508.

    [122] J. Zhang, G. Liao, S. Jin, D. Cao, Q. Wei, H. Lu, et al., “All-fiber-optic temperature sensor based on reduced graphene oxide,” Laser Physics Letters, 2014, 11(3): 035901.

    [123] S. Li, L. Xia, Z. Chen, J. Yu, H. Guan, H. Lu, et al., “Colloidal crystal cladding fiber based on side-polished fiber and its temperature sensing” Optical and Quantum Electronics, 2017, 49(2): 1-10.

    [124] J. Yu, H. Li, V. Hsiao, W. Liu, J. Tang, Y. Zhai, et al., “A fiber-optic violet sensor by using the surface grating formed by a photosensitive hybrid liquid crystal film on side-polished fiber,” Measurement Science and Technology, 2013, 24(9): 094019.

    [125] W. H. Fu, V. K. Hsiao, J. Y. Tang, M. H. Wu, and Z. Chen, “All fiber-optic sensing of light using side-polished fiber overlaid with photoresponsive liquid crystals,” Sensors and Actuators B: Chemical, 2011, 156(1): 423-427.

    [126] M. J. Yee, N. Mubarak, E. Abdullah, M. Khalid, R. Walvekar, R. R. Karri, et al., “Carbon nanomaterials based films for strain sensing application - a review,” Nano-Structures & Nano-Objects, 2019, 18: 100312.

    [127] S. Liehr, P. Lenke, M. Wendt, K. Krebber, M. Seeger, E. Thiele, et al., “Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring,” IEEE Sensors Journal, 2009, 9(11): 1330-1338.

    [128] H. H. Qazi, A. B. Mohammad, H. Ahmad, and M. Z. Zulkifli, “D-shaped polarization maintaining fiber sensor for strain and temperature monitoring,” Sensors, 2016, 16(9): 1505.

    [129] A. P. A. Raju, A. Lewis, B. Derby, R. J. Young, I. A. Kinloch, R. Zan, et al., “Wide-area strain sensors based upon graphene-polymer composite coatings probed by Raman spectroscopy,” Advanced Functional Materials, 2014, 24(19): 2865-2874.

    [130] D. Song, Q. Chai, Y. Liu, Y. Jiang, J. Zhang, W. Sun, et al., “A simultaneous strain and temperature sensing module based on FBG-in-SMS,” Measurement Science and Technology, 2014, 25(5): 055205.

    [131] Y. L. Lo, C. H. Chuang, and Z. W. Lin, “Ultrahigh sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology,” Optics Letters, 2011, 36(13): 2489-2491.

    [132] Y. Ying, J. K. Wang, K. Xu, and G. Y. Si, “High sensitivity D-shaped optical fiber strain sensor based on surface plasmon resonance,” Optics Communications, 2020, 460: 125147.

    [133] J. G. Teixeira, I. T. Leite, S. Silva, and O. Frazao, “Advanced fiber-optic acoustic sensors,” Photonic Sensors, 2014, 4(3): 198-208.

    [134] B. Fischer and E. Wintner, “Ultra-sensitive (acoustic) pressure sensor with high temporal resolution,” Optical Sensors, 2011, DOI: 10.1364/SENSORS.2011.SMB5.

    [135] C. Li, X. Peng, H. Zhang, C. Wang, S. Fan, and S. Cao, “A sensitivity-enhanced flexible acoustic sensor using side-polished fiber Bragg grating,” Measurement, 2018, 117: 252-257.

    [136] W. Wang, N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, “Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber,” Optics Express, 2009, 17(19): 16613-16618.

    [137] J. Tang, J. Fang, Y. Liang, B. Zhang, Y. Luo, X. Liu, et al., “All-fiber-optic VOC gas sensor based on side-polished fiber wavelength selectively coupled with cholesteric liquid crystal film,” Sensors and Actuators B: Chemical, 2018, 273: 1816-1826.

    [138] M. Khan, R. Rahaman, and S. W. Kang, “A high sensitivity and wide dynamic range fiber-optic sensor for low-concentration VOC gas detection,” Sensors, 2014, 14(12): 23321-23336.

    [139] Y. Xiao, J. Yu, L. Shun, S. Tan, X. Cai, Y. Luo, et al., “Reduced graphene oxide for fiber-optic toluene gas sensing,” Optics Express, 2016, 24(25): 28290-28302.

    [140] H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, et al., “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Applied Materials & Interfaces, 2013, 5(13): 6376-6380.

    [141] M. Parmar, C. Balamurugan, and D. W. Lee, “PANI and graphene/PANI nanocomposite films-comparative toluene gas sensing behavior,” Sensors, 2013, 13(12): 16611-16624.

    [142] I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sensors and Actuators B: Chemical, 2013, 182: 344-350.

    [143] H. Zhang, Y. Chen, X. Feng, X. Xiong, S. Hu, Z. Jiang, et al., “Long-range surface plasmon resonance sensor based on side-polished fiber for biosensing applications,” IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(2): 1-9.

    [144] J. Tang, Z. Li, M. Xie, Y. Zhang, W. Long, S. Long, et al., “Optical fiber bio-sensor for phospholipase using liquid crystal,” Biosensors and Bioelectronics, 2020, 170: 112547.

    [145] N. Alberto, M. F. Domingues, C. Marques, P. André, and P. Antunes, “Optical fiber magnetic field sensors based on magnetic fluid: a review,” Sensors, 2018, 18(12): 4325.

    [146] Y. Chen, W. Sun, Y. Zhang, G. Liu, Y. Luo, J. Dong, et al., “Magnetic nanoparticles functionalized few-mode-fiber-based plasmonic vector magnetometer,” Nanomaterials, 2019, 9(5): 785.

    [147] Y. Chen, Y. Hu, Y. Zhang, Z. Jiang, G. Liu, Y. Luo, et al., “A portable smartphone-based vector-magnetometer illuminated and imaged via a side-polished-fiber functionalized with magnetic fluid,” IEEE Sensors Journal, 2019, 20(3): 1283-1289.

    Linqing ZHUO, Jieyuan TANG, Wenguo ZHU, Huadan ZHENG, Heyuan GUAN, Huihui LU, Yaofei CHEN, Yunhan LUO, Jun ZHANG, Yongchun ZHONG, Jianhui YU, and Zhe CHEN. Side Polished Fiber: A Versatile Platform for Compact Fiber Devices and Sensors[J]. Photonic Sensors, 2023, 13(1): 230120
    Download Citation