• Infrared and Laser Engineering
  • Vol. 50, Issue 12, 20211059 (2021)
Zhentao Liu1, Chenyu Hu1、2, Zhishen Tong1, Chunyan Chu3, and Shensheng Han1、2、*
Author Affiliations
  • 1Key Laboratory for Quantum Optics of CAS, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
  • 3Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    DOI: 10.3788/IRLA20211059 Cite this Article
    Zhentao Liu, Chenyu Hu, Zhishen Tong, Chunyan Chu, Shensheng Han. Some research progress on the theoretical study of ghost imaging in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211059 Copy Citation Text show less
    References

    [1] R H Brown, R Q Twiss. Correlation between photons in two coherent beams of light. Nature, 177, 27-29(1956).

    [2] Brown R Hanbury, R Q Twiss. The question of correlation between photons in coherent light rays. Nature, 178, 1447-1448(1956).

    [3] D V Strekalov, A V Sergienko, D N Klyshko, et al. Observation of two-photon "ghost'' interference and diffraction. Physical Review Letters, 74, 3600-3603(1995).

    [4] T B Pittman, Y H Shih, D V Strekalov, et al. Optical imaging by means of two-photon quantum entanglement. Physical Review A, 52, R3429-R3432(1995).

    [5] R S Bennink, S J Bentley, R W Boyd. "Two-photon'' coincidence imaging with a classical source. Physical Review Letters, 89, 113601(2002).

    [6] J Cheng, S Han. Incoherent coincidence imaging and its applicability in X-ray diffraction. Physical Review Letters, 92, 093903(2004).

    [7] A Gatti, E Brambilla, M Bache, et al. Ghost imaging with thermal light: Comparing entanglement and classicalcorrelation. Physical Review Letters, 93, 093602(2004).

    [8] Chen Huaijin, Asif M S, Sankaranarayanan A C, et al. FPACS: Focal plane arraybased compressive imaging in shtwave infrared[C]Proceedings of the 2015 IEEE Conference on Computer Vision Pattern Recognition (CVPR), 2015.

    [9] M F Duarte, M A Davenport, D Takhar, et al. Single-pixel imaging via compressive sampling. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [10] Z Tong, Z Liu, J Wang, et al. Breaking Rayleigh’s criterion via discernibility in high-dimensional light-field space with snapshot ghost imaging. arXiv, 2004.00135(2020).

    [11] W Gong, S Han. Experimental investigation of the quality of lenslesssuper-resolution ghost imaging via sparsity constraints. Physics Letters A, 376, 1519-1522(2012).

    [12] Longzhen Li, Xuri Yao, Xuefeng Liu, et al. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 63, 224201(2014).

    [13] Z Chen, J Shi, Y Li, et al. Super-resolution thermal ghost imaging based on deconvolution. The European Physical Journal - Applied Physics, 67, 10501(2014).

    [14] C Zhao, W Gong, M Chen, et al. Ghost imaging lidar via sparsity constraints. Applied Physics Letters, 101, 141123(2012).

    [15] B I Erkmen. Computational ghost imaging for remote sensing. J Opt Soc Am A, 29, 782-789(2012).

    [16] N D Hardy, J H Shapiro. Computational ghost imaging versus imaging laser radar for three-dimensional imaging. Physical Review A, 87, 023820(2013).

    [17] B Sun, M P Edgar, R Bowman, et al. 3D computational imaging with single-pixel detectors. Science, 340, 844-847(2013).

    [18] Z Liu, S Tan, J Wu, et al. Spectral camera based on ghost imaging via sparsity constraints. Scientific Reports, 6, 25718(2016).

    [19] Y Wang, J Suo, J Fan, et al. Hyperspectral computational ghost imaging via temporal multiplexing. IEEE Photonics Technology Letters, 28, 288-291(2016).

    [20] Meixuan Li, Siqi Zhang, Hong Li, et al. Research on the bandpass filter used for single-exposure multi-spectral ghost imaging system. Infrared and Laser Engineering, 49, 20200169(2020).

    [21] Jian Huang, Dongfeng Shi, Wenwen Meng, et al. Study on spectral encoded computational ghost imaging. Infrared and Laser Engineering, 50, 20200120(2021).

    [22] C Chu, S Liu, Z Liu, et al. Spectral polarization camera based on ghost imaging via sparsity constraints. Appl Opt, 60, 4632-4638(2021).

    [23] D Shi, S Hu, Y Wang. Polarimetric ghost imaging. Opt Lett, 39, 1231-1234(2014).

    [24] Y Zhu, J Shi, Y Yang, et al. Polarization difference ghost imaging. Appl Opt, 54, 1279-84(2015).

    [25] Y Liu, J Shi, G Zeng. Single-photon-counting polarization ghost imaging. Appl Opt, 55, 10347-10351(2016).

    [26] T Kobata, T Nomura. Digital holographic three-dimensional Mueller matrix imaging. Appl Opt, 54, 5591-5596(2015).

    [27] Z Ye, J Xiong, H C Liu. Ghost difference imaging using one single-pixel detector. Physical Review Applied, 15, 034035(2021).

    [28] H Yu, R Lu, S Han, et al. Fourier-transform ghost imaging with hard X rays. Physical Review Letters, 117, 113901(2016).

    [29] D Pelliccia, A Rack, M Scheel, et al. Experimental X-Ray Ghost Imaging. Physical Review Letters, 117, 113902(2016).

    [30] Y Klein, A Schori, I P Dolbnya, et al. X-ray computational ghost imaging with single-pixel detector. Opt Express, 27, 3284-3293(2019).

    [31] A X Zhang, Y H He, L A Wu, et al. Tabletop x-ray ghost imaging with ultra-low radiation. Optica, 5, 374-377(2018).

    [32] S Li, F Cropp, K Kabra, et al. Electron ghost imaging. Physical Review Letters, 121, 114801(2018).

    [33] R I Khakimov, B M Henson, D K Shin, et al. Ghost imaging with atoms. Nature, 540, 100-103(2016).

    [34] Y H He, Y Y Huang, Z R Zeng, et al. Single-pixel imaging with neutrons. Science Bulletin, 66, 133-138(2021).

    [35] A M Kingston, G R Myers, D Pelliccia, et al. Neutron ghost imaging. Physical Review A, 101, 053844(2020).

    [36] W Li, Z Tong, K Xiao, et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints. Optica, 6, 1515-1523(2019).

    [37] N Tian, Q Guo, A Wang, et al. Fluorescence ghost imaging with pseudothermal light. Opt Lett, 36, 3302-3304(2011).

    [38] Y Tian, H Ge, X J Zhang, et al. Acoustic ghost imaging in the time domain. Physical Review Applied, 13, 064044(2020).

    [39] N A Collaboration, H Bøggild, J Boissevain, et al. Two-kaon correlations in central Pb+Pb collisions at 158 AGeV/c. Physical Review Letters, 87, 112301(2001).

    [40] S S Adler, S Afanasiev, C Aidala, et al. Bose-Einstein correlations of charged pion pairs in Au+Au collisions at \begin{document}$\scriptsize{\sqrt {{\rm{sNN}}}} $\end{document}=200 GeV. Physical Review Letters, 93, 152302(2004).

    [41] A Gatti, E Brambilla, M Bache, et al. Correlated imaging, quantum and classical. Physical Review A, 70, 013802(2004).

    [42] Y Shechtman, Y C Eldar, O Cohen, et al. Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal Processing Magazine, 32, 87-109(2015).

    [43] W Martienssen, E Spiller. Coherence and fluctuations in light beams. American Journal of Physics, 32, 919-926(1964).

    [44] Y Bromberg, O Katz, Y Silberberg. Ghost imaging with a single detector. Physical Review A, 79, 053840(2009).

    [45] Shapiro J H. Computational ghost imaging[C]Proceedings of the Conference on Lasers ElectroOpticsInternational Quantum Electronics Conference, 2009.

    [46] Minghai Lu, Xia Shen, Shensheng Han. Ghost imaging via compressive sampling based on digital micromirror device. Acta Optica Sinica, 31, 0711002(2011).

    [47] F T Arecchi. Measurement of the statistical distribution of gaussian and laser sources. Physical Review Letters, 15, 912-916(1965).

    [48] H Liu, J Cheng, S Han. Cross spectral purity and its influence on ghost imaging experiments. Optics Communications, 273, 50-53(2007).

    [49] D Zhang, Y H Zhai, L A Wu, et al. Correlated two-photon imaging with true thermal light. Opt Lett, 30, 2354-2356(2005).

    [50] X F Liu, X H Chen, X R Yao, et al. Lensless ghost imaging with sunlight. Opt Lett, 39, 2314-2317(2014).

    [51] M Giglio, M Carpineti, A Vailati. Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function g(r). Physical Review Letters, 85, 1416-1419(2000).

    [52] R Cerbino, L Peverini, M A C Potenza, et al. X-ray-scattering information obtained from near-field speckle. Nature Physics, 4, 238-243(2008).

    [53] G R Arce, D J Brady, L Carin, et al. Compressive coded aperture spectral imaging: An introduction. IEEE Signal Processing Magazine, 31, 105-115(2014).

    [54] N Antipa, G Kuo, R Heckel, et al. DiffuserCam: lensless single-exposure 3 D imaging. Optica, 5, 1-9(2018).

    [55] S K Sahoo, D Tang, C Dang. Single-shot multispectral imaging with a monochromatic camera. Optica, 4, 1209-1213(2017).

    [56] H Kwon, E Arbabi, S M Kamali, et al. Computational complex optical field imaging using a designed metasurface diffuser. Optica, 5, 924-931(2018).

    [57] X Li, J A Greenberg, M E Gehm. Single-shot multispectral imaging through a thin scatterer. Optica, 6, 864-871(2019).

    [58] K Monakhova, K Yanny, N Aggarwal, et al. Spectral DiffuserCam: Lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298-1307(2020).

    [59] R Zhu, H Yu, R Lu, et al. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints. Opt Express, 26, 2181-2190(2018).

    [60] Y Cai, S Y Zhu. Ghost imaging with incoherent and partially coherent light radiation. Physical Review E, 71, 056607(2005).

    [61] H Liu, J Cheng, S Han. Ghost imaging in Fourier space. Journal of Applied Physics, 102, 103102(2007).

    [62] Xia Shen, Yanfeng Bai, Tao Qin, et al. Experimental investigation of quality of lensless ghost imaging with pseudo-thermal light. Chinese Physics Letters, 25, 3968-3971(2008).

    [63] F Ferri, D Magatti, L A Lugiato, et al. Differential ghost imaging. Physical Review Letters, 104, 253603(2010).

    [64] B I Erkmen, J H Shapiro. Signal-to-noise ratio of Gaussian-state ghost imaging. Physical Review A, 79, 023833(2009).

    [65] K W C Chan, M N O’Sullivan, R W Boyd. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction. Opt Express, 18, 5562-5573(2010).

    [66] J Liu. On the recovery conditions for practical ghost imaging with AMP algorithm. Opt Express, 26, 20519-20533(2018).

    [67] S Jalali, X Yuan. Snapshot compressed sensing: Performance bounds and algorithms. IEEE Transactions on Information Theory, 65, 8005-8024(2019).

    [68] X Yuan, D J Brady, A K Katsaggelos. Snapshot compressive imaging: Theory, algorithms, and applications. IEEE Signal Processing Magazine, 38, 65-88(2021).

    [69] R A Fisher, E J Russell. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 222, 309-368(1922).

    [70] Kay S M. Fundamentals of Statistical Signal Processing [M]. NJ: Prentice Hall, 2001.

    [71] O Katz, Y Bromberg, Y Silberberg, et al. Compressive ghost imaging. Applied Physics Letters, 95, 131110(2009).

    [72] L Jiying, Z Jubo, L Chuan, et al. High-quality quantum-imaging algorithm and experiment based on compressive sensing. Opt Lett, 35, 1206-1208(2010).

    [73] V Katkovnik, J Astola. Compressive sensing computational ghost imaging. J Opt Soc Am A, 29, 1556-1567(2012).

    [74] S Han, H Yu, X Shen, et al. A review of ghost imaging via sparsity constraints. Applied Sciences, 8, 1379(2018).

    [75] Enrong Li, Mingliang Chen, Wenlin Gong, et al. Ghost imaging via compressive sampling based on digital micromirror device. Acta Optica Sinica, 33, 1211003(2013).

    [76] J Li, B Luo, D Yang, et al. Negative exponential behavior of image mutual information for pseudo-thermal light ghost imaging: observation, modeling, and verification. Science Bulletin, 62, 717-723(2017).

    [77] C Hu, R Zhu, H Yu, et al. Correspondence Fourier-transform ghost imaging. Physical Review A, 103, 043717(2021).

    [78] Kaihong Luo, Boqiang Huang, Weimou Zheng, et al. Nonlocal imaging by conditional averaging of random reference measurements. Chin Phys Lett, 29, 074216(2012).

    [79] M-F Li, Y-R Zhang, K-H Luo, et al. Time-correspondence differential ghost imaging. Physical Review A, 87, 033813(2013).

    [80] D L Donoho, X Huo. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 47, 2845-2862(2001).

    [81] M A Davenport, M B Wakin. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Transactions on Information Theory, 56, 4395-4401(2010).

    [82] J A Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50, 2231-2242(2004).

    [83] L Mandel, E C G Sudarshan, E Wolf. Theory of photoelectric detection of light fluctuations. Proceedings of the Physical Society, 84, 435-444(1964).

    [84] E D Kolaczyk, R D Nowak. Multiscale likelihood analysis and complexity penalized estimation. The Annals of Statistics, 32, 500-527(2004).

    [85] M Makitalo, A Foi. Optimal inversion of the anscombe transformation in low-count poisson image denoising. IEEE Transactions on Image Processing, 20, 99-109(2011).

    [86] F Ferri, D Magatti, A Gatti, et al. High-resolution ghost image and ghost diffraction experiments with thermal light. Physical Review Letters, 94, 183602(2005).

    [87] M Zhang, Q Wei, X Shen, et al. Lensless Fourier-transform ghost imaging with classical incoherent light. Physical Review A, 75, 021803(2007).

    [88] M Bache, D Magatti, F Ferri, et al. Coherent imaging of a pure phase object with classical incoherent light. Physical Review A, 73, 053802(2006).

    [89] A Gatti, M Bache, D Magatti, et al. Coherent imaging with pseudo-thermal incoherent light. Journal of Modern Optics, 53, 739-760(2006).

    [90] W Gong, S Han. A method to improve the visibility of ghost images obtained by thermal light. Physics Letters A, 374, 1005-1008(2010).

    [91] B Sun, S S Welsh, M P Edgar, et al. Normalized ghost imaging. Opt Express, 20, 16892-16901(2012).

    [92] C Zhang, S Guo, J Cao, et al. Object reconstitution using pseudo-inverse for ghost imaging. Opt Express, 22, 30063-30073(2014).

    [93] W Gong. High-resolution pseudo-inverse ghost imaging. Photon Res, 3, 234-237(2015).

    [94] X Zhang, X Meng, X Yang, et al. Singular value decomposition ghost imaging. Opt Express, 26, 12948-12958(2018).

    [95] Z Tong, Z Liu, C Hu, et al. Preconditioned deconvolution method for high-resolution ghost imaging. Photon Res, 9, 1069-1077(2021).

    [96] D L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [97] E J Candes, T Tao. Near-optimal signal recovery from random projections: Universal Encoding Strategies?. IEEE Transactions on Information Theory, 52, 5406-5425(2006).

    [98] W Gong, C Zhao, H Yu, et al. Three-dimensional ghost imaging lidar via sparsity constraint. Scientific Reports, 6, 26133(2016).

    [99] H Wang, S Han. Coherent ghost imaging based on sparsity constraint without phase-sensitive detection. EPL (Europhysics Letters), 98, 24003(2012).

    [100] S Liu, Z Liu, J Wu, et al. Hyperspectral ghost imaging camera based on a flat-field grating. Opt Express, 26, 17705-17716(2018).

    [101] R D Gill, B Y Levit. Applications of the van trees inequality: A Bayesian Cramér-Rao bound. Bernoulli, 1, 59-79(1995).

    [102] Davison A C, Hinkley D V. Bootstrap Methods Their Application [M]. New Yk: Cambridge University Press, 1997.

    [103] L Tenorio, F Andersson, Hoop M de, et al. Data analysis tools for uncertainty quantification of inverse problems. Inverse Problems, 27, 045001(2011).

    [104] J Xu, Q Li, J Wang. Multiple norms and boundary constraint enforced image deblurring via efficient MCMC algorithm. IEEE Signal Processing Letters, 27, 41-45(2020).

    [105] Cohen S, Tomasi C. Systems of Bilinear Equations [R]. Califnia: Stanfd University, 1997.

    [106] C Helstrom. The detection and resolution of optical signals. IEEE Transactions on Information Theory, 10, 275-287(1964).

    [107] E L Kosarev. Shannon's superresolution limit for signal recovery. Inverse Problems, 6, 55-76(1990).

    [108] L B Lucy. Resolution limits for deconvolved images. The Astronomical Journal, 104, 1260(1992).

    [109] L B Lucy. Statistical limits to super resolution. Astronomy and Astrophysics, 261, 706(1992).

    [110] Dekker A J den, den Bos A van. Resolution: A survey. J Opt Soc Am A, 14, 547-557(1997).

    [111] S T Smith. Statistical resolution limits and the complexified Crame/spl acute/r-Rao bound. IEEE Transactions on Signal Processing, 53, 1597-1609(2005).

    [112] M Tsang. Quantum limits to optical point-source localization. Optica, 2, 646-653(2015).

    [113] M Tsang, R Nair, X-M Lu. Quantum theory of superresolution for two incoherent optical point sources. Physical Review X, 6, 031033(2016).

    [114] X-M Lu, H Krovi, R Nair, et al. Quantum-optimal detection of one-versus-two incoherent optical sources with arbitrary separation. NPJ Quantum Information, 4, 64(2018).

    [115] Han Zhe. Research on application of sensitivity analysis convex optimization they in ghost imaging[D]. Beijing: Beijing University of Posts Telecommunications, 2020. (in Chinese)

    [116] Z Ben-Haim, Y C Eldar. On the constrained CramÉr–Rao bound with a singular fisher information matrix. IEEE Signal Processing Letters, 16, 453-456(2009).

    CLP Journals

    [1] LIN Huizu, LIU Weitao, SUN Shuai, DU Longkun, CHANG Chen, LI Yuegang. Progress of ghost imaging algorithms[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863

    [2] Yutong Liu, Yan Li, Lu Jin, Huaxu Tang, Shun Wang, Yucong Wu, Yueshu Feng. System design of multi-resolution microscopic correlation imaging based on deep learning[J]. Infrared and Laser Engineering, 2023, 52(4): 20220461

    Zhentao Liu, Chenyu Hu, Zhishen Tong, Chunyan Chu, Shensheng Han. Some research progress on the theoretical study of ghost imaging in Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (Invited)[J]. Infrared and Laser Engineering, 2021, 50(12): 20211059
    Download Citation