• Photonics Insights
  • Vol. 1, Issue 2, R07 (2022)
Xiaoyan Zhou1、†,*, Liang Zhai2、*, and Jin Liu3
Author Affiliations
  • 1Tianjin Key Laboratory of Integrated Opto-electronics Technologies and Devices, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin, China
  • 2Department of Physics, University of Basel, Basel, Switzerland
  • 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
  • show less
    DOI: 10.3788/PI.2022.R07 Cite this Article Set citation alerts
    Xiaoyan Zhou, Liang Zhai, Jin Liu. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies[J]. Photonics Insights, 2022, 1(2): R07 Copy Citation Text show less
    References

    [1] C. P. Dietrich et al. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photonics Rev., 10, 870(2016).

    [2] S. Hepp et al. Semiconductor quantum dots for integrated quantum photonics. Adv. Quantum Technol., 2, 1900020(2019).

    [3] E. Pelucchi et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys., 4, 194(2021).

    [4] J. Wang et al. Integrated photonic quantum technologies. Nat. Photonics, 14, 273(2020).

    [5] A. W. Elshaari et al. Hybrid integrated quantum photonic circuits. Nat. Photonics, 14, 285(2020).

    [6] J.-H. Kim et al. Hybrid integration methods for on-chip quantum photonics. Optica, 7, 291(2020).

    [7] R. Uppu et al. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol., 16, 1308(2021).

    [8] L. Feng et al. Silicon photonic devices for scalable quantum information applications. Photonics Res., 10, A135(2022).

    [9] M. Halder et al. High coherence photon pair source for quantum communication. New J. Phys., 10, 023027(2008).

    [10] Q. Li, M. Davanço, K. Srinivasan. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photonics, 10, 406(2016).

    [11] X. Qiang et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics, 12, 534(2018).

    [12] R. J. Warburton. Single spins in self-assembled quantum dots. Nat. Mater., 12, 483(2013).

    [13] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347(2015).

    [14] P. Senellart, G. Solomon, A. G. White. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol., 12, 1026(2017).

    [15] I. Aharonovich, D. Englund, M. Toth. Solid-state single-photon emitters. Nat. Photonics, 10, 631(2016).

    [16] P. Yao, V. Manga Rao, S. Hughes. On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photonics Rev., 4, 499(2010).

    [17] Y. He et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett., 111, 237403(2013).

    [18] F. Liu et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol., 13, 835(2018).

    [19] J. Liu et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586(2019).

    [20] H. Wang et al. Towards optimal single-photon sources from polarized microcavities. Nat. Photonics, 13, 770(2019).

    [21] N. Tomm et al. A bright and fast source of coherent single photons. Nat. Nanotechnol., 16, 399(2021).

    [22] R. Uppu et al. Scalable integrated single-photon source. Sci. Adv., 6, eabc8268(2020).

    [23] T. Volz et al. Ultrafast all-optical switching by single photons. Nat. Photonics, 6, 605(2012).

    [24] A. Javadi et al. Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun., 6, 8655(2015).

    [25] W. B. Gao et al. Observation of entanglement between a quantum dot spin and a single photon. Nature, 491, 426(2012).

    [26] K. De Greve et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature, 491, 421(2012).

    [27] C.-Y. Lu, J.-W. Pan. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol., 16, 1294(2021).

    [28] S. Bogdanov et al. Material platforms for integrated quantum photonics. Opt. Mater. Express, 7, 111(2017).

    [29] S. Saravi, T. Pertsch, F. Setzpfandt. Lithium niobate on insulator: an emerging platform for integrated quantum photonics. Adv. Opt. Mater., 9, 2100789(2021).

    [30] J. Carolan et al. Universal linear optics. Science, 349, 711(2015).

    [31] W. Bogaerts et al. Programmable photonic circuits. Nature, 586, 207(2020).

    [32] A. W. Elshaari et al. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun., 8, 379(2017).

    [33] D. J. P. Ellis et al. Independent indistinguishable quantum light sources on a reconfigurable photonic integrated circuit. Appl. Phys. Lett., 112, 211104(2018).

    [34] C. Papon et al. Nanomechanical single-photon routing. Optica, 6, 524(2019).

    [35] X. Zhou et al. On-chip nanomechanical filtering of quantum-dot single-photon sources. Laser Photonics Rev., 14, 1900404(2019).

    [36] D. Leonard et al. Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett., 63, 3203(1993).

    [37] T. Mano et al. Ultra-narrow emission from single GaAs self-assembled quantum dots grown by droplet epitaxy. Nanotechnology, 20, 395601(2009).

    [38] F. Basso Basset et al. High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy. Nano Lett., 18, 505(2018).

    [39] S. Sanguinetti et al. Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer. J. Cryst. Growth, 253, 71(2003).

    [40] M. Gurioli et al. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater., 18, 799(2019).

    [41] X. Li et al. Origin of nanohole formation by etching based on droplet epitaxy. Nanoscale, 6, 2675(2014).

    [42] C. Heyn et al. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett., 94, 183113(2009).

    [43] Y. H. Huo, A. Rastelli, O. G. Schmidt. Ultra-small excitonic fine structure splitting in highly symmetric quantum dots on GaAs (001) substrate. Appl. Phys. Lett., 102, 152105(2013).

    [44] C. G. Van de Walle. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B, 39, 1871(1989).

    [45] C. Testelin et al. Hole–spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B, 79, 195440(2009).

    [46] L. Zhai et al. Large-range frequency tuning of a narrow-linewidth quantum emitter. Appl. Phys. Lett., 117, 083106(2020).

    [47] D. E. Reiter, T. Kuhn, V. M. Axt. Distinctive characteristics of carrier-phonon interactions in optically driven semiconductor quantum dots. Adv. Phys. X, 4, 1655478(2019).

    [48] J. Iles-Smith et al. Phonon scattering inhibits simultaneous near-unity efficiency and indistinguishability in semiconductor single-photon sources. Nat. Photonics, 11, 521(2017).

    [49] S. Lüker, D. E. Reiter. A review on optical excitation of semiconductor quantum dots under the influence of phonons. Semicond. Sci. Technol., 34, 063002(2019).

    [50] H. Eisele et al. Change of InAs/GaAs quantum dot shape and composition during capping. J. Appl. Phys., 104, 124301(2008).

    [51] L. Zhai et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun., 11, 4745(2020).

    [52] A. V. Kuhlmann et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys., 9, 570(2013).

    [53] J. Dreiser et al. Optical investigations of quantum dot spin dynamics as a function of external electric and magnetic fields. Phys. Rev. B, 77, 075317(2008).

    [54] M. Kroner et al. Resonant two-color high-resolution spectroscopy of a negatively charged exciton in a self-assembled quantum dot. Phys. Rev. B, 78, 075429(2008).

    [55] A. V. Kuhlmann et al. Transform-limited single photons from a single quantum dot. Nat. Commun., 6, 8204(2014).

    [56] H. Thyrrestrup et al. Quantum optics with near lifetime-limited quantum-dot transitions in a nanophotonic waveguide. Nano Lett., 18, 1801(2017).

    [57] L. Zhai et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol., 17, 829(2022).

    [58] H. Wang et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett., 116, 213601(2016).

    [59] F. T. Pedersen et al. Near transform-limited quantum dot linewidths in a broadband photonic crystal waveguide. ACS Photonics, 7, 2343(2020).

    [60] I. Merkulov, A. L. Efros, M. Rosen. Electron spin relaxation by nuclei in semiconductor quantum dots. Phys. Rev. B, 65, 205309(2002).

    [61] B. Urbaszek et al. Nuclear spin physics in quantum dots: an optical investigation. Rev. Mod. Phys., 85, 79(2013).

    [62] G. Ethier-Majcher et al. Improving a solid-state qubit through an engineered mesoscopic environment. Phys. Rev. Lett., 119, 130503(2017).

    [63] D. Gangloff et al. Quantum interface of an electron and a nuclear ensemble. Science, 364, 62(2019).

    [64] R. Stockill et al. Quantum dot spin coherence governed by a strained nuclear environment. Nat. Commun., 7, 12745(2016).

    [65] K. A. Fischer et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys., 13, 649(2017).

    [66] S. Das et al. A wave-function ansatz method for calculating field correlations and its application to the study of spectral filtering and quantum dynamics of multi-emitter systems(2019).

    [67] R. B. Patel et al. Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. Phys. Rev. Lett., 100, 207405(2008).

    [68] A. Schlehahn et al. An electrically driven cavity-enhanced source of indistinguishable photons with 61% overall efficiency. APL Photonics, 1, 011301(2016).

    [69] T. Müller et al. A quantum light-emitting diode for the standard telecom window around 1,550 nm. Nat. Commun., 9, 862(2018).

    [70] D. Huber et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun., 8, 15506(2017).

    [71] E. Schöll et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett., 19, 2404(2019).

    [72] S. E. Thomas et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett., 126, 233601(2021).

    [73] B. Alén et al. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett., 83, 2235(2003).

    [74] M. Atatüre et al. Quantum-dot spin-state preparation with near-unity fidelity. Science, 312, 551(2006).

    [75] A. Muller et al. Resonance fluorescence from a coherently driven semiconductor quantum dot in a cavity. Phys. Rev. Lett., 99, 187402(2007).

    [76] S. M. Ulrich et al. Dephasing of triplet-sideband optical emission of a resonantly driven quantum dot inside a microcavity. Phys. Rev. Lett., 106, 247402(2011).

    [77] M. Arcari et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [78] A. V. Kuhlmann et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum., 84, 073905(2013).

    [79] Y.-M. He et al. Coherently driving a single quantum two-level system with dichromatic laser pulses. Nat. Phys., 15, 941(2019).

    [80] T. K. Bracht et al. Swing-up of quantum emitter population using detuned pulses. PRX Quantum, 2, 040354(2021).

    [81] Y. Wei et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol., 17, 470(2022).

    [82] T. Heindel et al. A bright triggered twin-photon source in the solid state. Nat. Commun., 8, 14870(2017).

    [83] R. Uppu et al. On-chip deterministic operation of quantum dots in dual-mode waveguides for a plug-and-play single-photon source. Nat. Commun., 11, 3782(2020).

    [84] F. T. Østfeldt et al. On-demand source of dual-rail photon pairs based on chiral interaction in a nanophotonic waveguide. PRX Quantum, 3, 020363(2022).

    [85] L. Ginés et al. Time-bin entangled photon pairs from quantum dots embedded in a self-aligned cavity. Opt. Express, 29, 4174(2021).

    [86] Z. X. Koong et al. Coherent dynamics in quantum emitters under dichromatic excitation. Phys. Rev. Lett., 126, 047403(2021).

    [87] Y. Karli et al. SUPER scheme in action: experimental demonstration of red-detuned excitation of a quantum emitter. Nano Lett., 22, 6567(2022).

    [88] J. H. Quilter et al. Phonon-assisted population inversion of a single quantum dot by pulsed laser excitation. Phys. Rev. Lett., 114, 137401(2015).

    [89] M. Cosacchi et al. Emission-frequency separated high quality single-photon sources enabled by phonons. Phys. Rev. Lett., 123, 017403(2019).

    [90] C. Gustin, S. Hughes. Efficient pulse-excitation techniques for single photon sources from quantum dots in optical cavities. Adv. Quantum Technol., 3, 1900073(2020).

    [91] M. Müller et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics, 8, 224(2014).

    [92] F. Sbresny et al. Stimulated generation of indistinguishable single photons from a quantum ladder system. Phys. Rev. Lett., 128, 093603(2022).

    [93] J. Yan et al. Double-pulse generation of indistinguishable single photons with optically controlled polarization. Nano Lett., 22, 1483(2022).

    [94] L. Zhai, A. Javadi. Harmonizing single photons with a laser pulse. Nat. Nanotechnol., 17, 436(2022).

    [95] C. M. Dawson, H. L. Haselgrove, M. A. Nielsen. Noise thresholds for optical quantum computers. Phys. Rev. Lett., 96, 020501(2006).

    [96] S. Bartolucci et al. Fusion-based quantum computation(2021).

    [97] Y. Chen et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat. Commun., 9, 2994(2018).

    [98] K. A. Serrels et al. Solid immersion lens applications for nanophotonic devices. J. Nanophotonics, 2, 021854(2008).

    [99] M. Sartison et al. 3D printed micro-optics for quantum technology: optimised coupling of single quantum dot emission into a single-mode fibre(2021).

    [100] S. Fischbach et al. Single quantum dot with microlens and 3D-printed micro-objective as integrated bright single-photon source. ACS Photonics, 4, 1327(2017).

    [101] N. Somaschi et al. Near-optimal single-photon sources in the solid state. Nat. Photonics, 10, 340(2016).

    [102] S. Liu et al. A deterministic quantum dot micropillar single photon source with >65% extraction efficiency based on fluorescence imaging method. Sci. Rep., 7, 13986(2017).

    [103] H. Wang et al. Observation of intensity squeezing in resonance fluorescence from a solid-state device. Phys. Rev. Lett., 125, 153601(2020).

    [104] N. O. Antoniadis et al. A chiral one-dimensional atom using a quantum dot in an open microcavity. NPJ Quantum Inf., 8, 27(2022).

    [105] S. G. Carter et al. Quantum control of a spin qubit coupled to a photonic crystal cavity. Nat. Photonics, 7, 329(2013).

    [106] S. Ates et al. Bright single-photon emission from a quantum dot in a circular Bragg grating microcavity. IEEE J. Sel. Top. Quantum Electron., 18, 1711(2012).

    [107] S. Kolatschek et al. Bright Purcell enhanced single-photon source in the telecom O-band based on a quantum dot in a circular Bragg grating. Nano Lett., 21, 7740(2021).

    [108] H. Wang et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett., 122, 113602(2019).

    [109] R. Coles et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer. Nat. Commun., 7, 11183(2016).

    [110] P. Lodahl, S. Mahmoodian, S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys., 87, 347(2015).

    [111] V. S. C. Manga Rao, S. Hughes. Single quantum-dot Purcell factor and factor in a photonic crystal waveguide. Phys. Rev. B, 75, 205437(2007).

    [112] A. Javadi et al. Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides. J. Opt. Soc. Am. B, 35, 514(2018).

    [113] P. Lodahl, A. Ludwig, R. J. Warburton. A deterministic source of single photons. Phys. Today, 75, 44(2022).

    [114] H. Siampour et al. Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide(2022).

    [115] O. Gazzano et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun., 4, 1425(2013).

    [116] S. Rahimi-Keshari, T. C. Ralph, C. M. Caves. Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X, 6, 021039(2016).

    [117] A. Thoma et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments. Phys. Rev. Lett., 116, 033601(2016).

    [118] H. Wang et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett., 123, 250503(2019).

    [119] T. Jakubczyk et al. Impact of phonons on dephasing of individual excitons in deterministic quantum dot microlenses. ACS Photonics, 3, 2461(2016).

    [120] Y.-J. Wei et al. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage. Nano Lett., 14, 6515(2014).

    [121] R. M. Stevenson et al. A semiconductor source of triggered entangled photon pairs. Nature, 439, 179(2006).

    [122] R. Trotta et al. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices. Nano Lett., 14, 3439(2014).

    [123] J. Zhang et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun., 6, 10067(2015).

    [124] D. Huber et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett., 121, 033902(2018).

    [125] H. Ollivier et al. Three-dimensional electrical control of the excitonic fine structure for a quantum dot in a cavity. Phys. Rev. Lett., 129, 057401(2022).

    [126] T. Seidelmann et al. Two-photon excitation sets limit to entangled photon pair generation from quantum emitters. Phys. Rev. Lett., 129, 193604(2022).

    [127] H. Jayakumar et al. Time-bin entangled photons from a quantum dot. Nat. Commun., 5, 4251(2014).

    [128] M. Prilmüller et al. Hyperentanglement of photons emitted by a quantum dot. Phys. Rev. Lett., 121, 110503(2018).

    [129] P. Lodahl et al. Chiral quantum optics. Nature, 541, 473(2017).

    [130] I. Söllner, L. Midolo, P. Lodahl. Deterministic single-phonon source triggered by a single photon. Phys. Rev. Lett., 116, 234301(2016).

    [131] M. Scheucher et al. Quantum optical circulator controlled by a single chirally coupled atom. Science, 354, 1577(2016).

    [132] K. Stannigel, P. Rabl, P. Zoller. Driven-dissipative preparation of entangled states in cascaded quantum-optical networks. New J. Phys., 14, 063014(2012).

    [133] C. Gonzalez-Ballestero et al. Chiral route to spontaneous entanglement generation. Phys. Rev. B, 92, 155304(2015).

    [134] I. J. Luxmoore et al. Interfacing spins in an InGaAs quantum dot to a semiconductor waveguide circuit using emitted photons. Phys. Rev. Lett., 110, 037402(2013).

    [135] S. Xiao et al. Position-dependent chiral coupling between single quantum dots and cross waveguides. Appl. Phys. Lett., 118, 091106(2021).

    [136] B. Le Feber, N. Rotenberg, L. Kuipers. Nanophotonic control of circular dipole emission. Nat. Commun., 6, 6695(2015).

    [137] I. Söllner et al. Deterministic photon–emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 10, 775(2015).

    [138] P. Mrowinski et al. Directional emission of a deterministically fabricated quantum dot-bragg reflection multimode waveguide system. ACS Photonics, 6, 2231(2019).

    [139] S. Barik et al. A topological quantum optics interface. Science, 359, 666(2018).

    [140] M. J. Mehrabad et al. Chiral topological photonics with an embedded quantum emitter. Optica, 7, 1690(2020).

    [141] T. Ma, G. Shvets. All-Si valley-hall photonic topological insulator. New J. Phys., 18, 025012(2016).

    [142] P. Jiang et al. Recent progress in chiral topological quantum interface. Front. Phys., 10, 845579(2022).

    [143] R. Bose et al. Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett., 108, 227402(2012).

    [144] L. De Santis et al. A solid-state single-photon filter. Nat. Nanotechnol., 12, 663(2017).

    [145] D. Witthaut, M. D. Lukin, A. S. Sørensen. Photon sorters and QND detectors using single photon emitters. Europhys. Lett., 97, 50007(2012).

    [146] L.-M. Duan, H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett., 92, 127902(2004).

    [147] H. Zheng, D. J. Gauthier, H. U. Baranger. Waveguide-QED-based photonic quantum computation. Phys. Rev. Lett., 111, 090502(2013).

    [148] K. M. Birnbaum et al. Photon blockade in an optical cavity with one trapped atom. Nature, 436, 87(2005).

    [149] D. E. Chang, V. Vuletić, M. D. Lukin. Quantum nonlinear optics-photon by photon. Nat. Photonics, 8, 685(2014).

    [150] D. Niemietz et al. Nondestructive detection of photonic qubits. Nature, 591, 570(2021).

    [151] K. Srinivasan, O. Painter. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature, 450, 862(2007).

    [152] I. Fushman et al. Controlled phase shifts with a single quantum dot. Science, 320, 769(2008).

    [153] A. Faraon et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys., 4, 859(2008).

    [154] D. Roy, C. M. Wilson, O. Firstenberg. Colloquium: strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys., 89, 021001(2017).

    [155] J.-T. Shen, S. Fan. Strongly correlated multiparticle transport in one dimension through a quantum impurity. Phys. Rev. A, 76, 062709(2007).

    [156] J.-T. Shen, S. Fan. Strongly correlated two-photon transport in a one-dimensional waveguide coupled to a two-level system. Phys. Rev. Lett., 98, 153003(2007).

    [157] N. Tomm et al. Direct observation of photon bound states using a single artificial atom(2022).

    [158] H. Le Jeannic et al. Experimental reconstruction of the few-photon nonlinear scattering matrix from a single quantum dot in a nanophotonic waveguide. Phys. Rev. Lett., 126, 023603(2021).

    [159] H. L. Jeannic et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys., 18, 1191(2022).

    [160] S. Mahmoodian et al. Dynamics of many-body photon bound states in chiral waveguide QED. Phys. Rev. X, 10, 031011(2020).

    [161] T. C. Ralph et al. Photon sorting, efficient Bell measurements, and a deterministic controlled-Z gate using a passive two-level nonlinearity. Phys. Rev. Lett., 114, 173603(2015).

    [162] F. Yang et al. Deterministic photon sorting in waveguide QED systems. Phys. Rev. Lett., 128, 213603(2022).

    [163] G. R. Steinbrecher et al. Quantum optical neural networks. NPJ Quantum Inf., 5, 60(2019).

    [164] M. Pompili et al. Realization of a multinode quantum network of remote solid-state qubits. Science, 372, 259(2021).

    [165] A. Russo, E. Barnes, S. E. Economou. Generation of arbitrary all-photonic graph states from quantum emitters. New J. Phys., 21, 055002(2019).

    [166] D. Press et al. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature, 456, 218(2008).

    [167] R. Stockill et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett., 119, 010503(2017).

    [168] M. Kroutvar et al. Optically programmable electron spin memory using semiconductor quantum dots. Nature, 432, 81(2004).

    [169] C.-Y. Lu et al. Direct measurement of spin dynamics in InAs/GaAs quantum dots using time-resolved resonance fluorescence. Phys. Rev. B, 81, 035332(2010).

    [170] T. M. Godden et al. Coherent optical control of the spin of a single hole in an InAs/GaAs quantum dot. Phys. Rev. Lett., 108, 017402(2012).

    [171] D. Ding et al. Coherent optical control of a quantum-dot spin-qubit in a waveguide-based spin-photon interface. Phys. Rev. Appl., 11, 031002(2019).

    [172] Ł. Dusanowski et al. Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nat. Commun., 13, 748(2022).

    [173] J. Bodey et al. Optical spin locking of a solid-state qubit. NPJ Quantum Inf., 5, 95(2019).

    [174] N. F. Ramsey. A molecular beam resonance method with separated oscillating fields. Phys. Rev., 78, 695(1950).

    [175] D. Press et al. Ultrafast optical spin echo in a single quantum dot. Nat. Photonics, 4, 367(2010).

    [176] C. Latta et al. Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization. Nat. Phys., 5, 758(2009).

    [177] A. Högele et al. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot. Phys. Rev. Lett., 108, 197403(2012).

    [178] T. Nutz, E. Barnes, S. E. Economou. Solvable quantum model of dynamic nuclear polarization in optically driven quantum dots. Phys. Rev. B, 99, 035439(2019).

    [179] A. Bechtold et al. Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot. Nat. Phys., 11, 1005(2015).

    [180] G. De Lange et al. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science, 330, 60(2010).

    [181] A. Ajoy, G. A. Álvarez, D. Suter. Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath. Phys. Rev. A, 83, 032303(2011).

    [182] F. K. Malinowski et al. Notch filtering the nuclear environment of a spin qubit. Nat. Nanotechnol., 12, 16(2017).

    [183] M. H. Abobeih et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun., 9, 2552(2018).

    [184] L. Zaporski et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions(2022).

    [185] X. Xu et al. Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys., 4, 692(2008).

    [186] D. Brunner et al. A coherent single-hole spin in a semiconductor. Science, 325, 70(2009).

    [187] J. Houel et al. High resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. Phys. Rev. Lett., 112, 107401(2014).

    [188] M. Issler et al. Nuclear spin cooling using Overhauser-field selective coherent population trapping. Phys. Rev. Lett., 105, 267202(2010).

    [189] A. R. Onur, C. H. van der Wal. Two-laser dynamic nuclear polarization with semiconductor electrons: feedback, suppressed fluctuations, and bistability near two-photon resonance. Phys. Rev. B, 98, 165304(2018).

    [190] C. Monroe et al. Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett., 75, 4011(1995).

    [191] E. V. Denning et al. Collective quantum memory activated by a driven central spin. Phys. Rev. Lett., 123, 140502(2019).

    [192] G. Gillard, E. Clarke, E. A. Chekhovich. Harnessing many-body spin environment for long coherence storage and high-fidelity single-shot qubit readout. Nat. Commun., 13, 4048(2022).

    [193] A. Ruskuc et al. Nuclear spin-wave quantum register for a solid-state qubit. Nature, 602, 408(2022).

    [194] A. Delteil et al. Generation of heralded entanglement between distant hole spins. Nat. Phys., 12, 218(2016).

    [195] D. Awschalom et al. Development of quantum interconnects (QUICs) for next-generation information technologies. PRX Quantum, 2, 017002(2021).

    [196] S. Muralidharan et al. Optimal architectures for long distance quantum communication. Sci. Rep., 6, 1(2016).

    [197] F. Lenzini et al. Active demultiplexing of single photons from a solid-state source. Laser Photonics Rev., 11, 1600297(2017).

    [198] P. I. Sund et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter(2022).

    [199] M. Reck et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58(1994).

    [200] W. R. Clements et al. Optimal design for universal multiport interferometers. Optica, 3, 1460(2016).

    [201] G. L. Zanin et al. Fiber-compatible photonic feed-forward with 99% fidelity. Opt. Express, 29, 3425(2021).

    [202] L. Midolo et al. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits. Opt. Express, 25, 33514(2017).

    [203] S. Aghaeimeibodi et al. Integration of quantum dots with lithium niobate photonics. Appl. Phys. Lett., 113, 221102(2018).

    [204] J.-H. Kim et al. Hybrid integration of solid-state quantum emitters on a silicon photonic chip. Nano Lett., 17, 7394(2017).

    [205] R. Katsumi et al. Transfer-printed single-photon sources coupled to wire waveguides. Optica, 5, 691(2018).

    [206] M. Davanco et al. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun., 8, 889(2017).

    [207] E. Lomonte et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun., 12, 6847(2021).

    [208] M. Dong et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photonics, 16, 59(2022).

    [209] S. Gyger et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun., 12, 1408(2021).

    [210] T. J. Seok et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64(2016).

    [211] N. C. Harris et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics, 11, 447(2017).

    [212] C. Taballione et al. 8 × 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express, 27, 26842(2019).

    [213] X. Chang et al. Mid-infrared Ge-based thermo-optic phase shifters with an improved figure of merit. Opt. Mater. Express, 12, 1055(2022).

    [214] C. Wang et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [215] B. Desiatov et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380(2019).

    [216] M. Zhang et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [217] R. Wu et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness. Nanomaterials, 8, 910(2018).

    [218] M. He et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359(2019).

    [219] L. Midolo, A. Schliesser, A. Fiore. Nano-opto-electro-mechanical systems. Nat. Nanotechnol., 13, 11(2018).

    [220] B. Guha et al. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6×106. Optica, 4, 218(2017).

    [221] S. Gehrsitz et al. The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling. J. Appl. Phys., 87, 7825(2000).

    [222] N. C. Harris et al. Large-scale quantum photonic circuits in silicon. Nanophotonics, 5, 456(2016).

    [223] G. Li et al. Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express, 20, 12035(2012).

    [224] T. J. Seok et al. Wafer-scale silicon photonic switches beyond die size limit. Optica, 6, 490(2019).

    [225] J. F. Bauters et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express, 19, 24090(2011).

    [226] K. Luke et al. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823(2015).

    [227] T. Shimoda et al. Low-loss, polarization-independent silicon-oxynitride waveguides for high-density integrated planar lightwave circuits. 28th European Conference on Optical Communication, 2, 1(2002).

    [228] H. Lee et al. Ultra-low-loss optical delay line on a silicon chip. Nat. Commun., 3, 867(2012).

    [229] A. W. Elshaari et al. Strain-tunable quantum integrated photonics. Nano Lett., 18, 7969(2018).

    [230] J. Mower et al. High-fidelity quantum state evolution in imperfect photonic integrated circuits. Phys. Rev. A, 92, 032322(2015).

    [231] T. Rudolph. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics, 2, 030901(2017).

    [232] M. Schwartz et al. Fully on-chip single-photon Hanbury–Brown and Twiss experiment on a monolithic semiconductor–superconductor platform. Nano Lett., 18, 6892(2018).

    [233] L. Chang et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photonics Rev., 12, 1800149(2018).

    [234] R. W. Boyd. Nonlinear Optics(2008).

    [235] S. Y. Siew et al. Review of silicon photonics technology and platform development. J. Light. Technol., 39, 4374(2021).

    [236] J. W. Silverstone et al. Silicon quantum photonics. IEEE J. Sel. Top. Quantum Electron., 22, 390(2016).

    [237] L. Chang et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [238] W. Xie et al. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express, 28, 32894(2020).

    [239] J. Liu et al. Emerging material platforms for integrated microcavity photonics. Sci. China Phys. Mech. Astron., 65, 1(2022).

    [240] A. Osada et al. Strongly coupled single-quantum-dot–cavity system integrated on a CMOS-processed silicon photonic chip. Phys. Rev. Appl., 11, 024071(2019).

    [241] R. Katsumi et al. Quantum-dot single-photon source on a CMOS silicon photonic chip integrated using transfer printing. APL Photonics, 4, 036105(2019).

    [242] S. Aghaeimeibodi et al. Silicon photonic add-drop filter for quantum emitters. Opt. Express, 27, 16882(2019).

    [243] I. E. Zadeh et al. Deterministic integration of single photon sources in silicon based photonic circuits. Nano Lett., 16, 2289(2016).

    [244] P. Schnauber et al. Indistinguishable photons from deterministically integrated single quantum dots in heterogeneous GaAs/Si3N4 quantum photonic circuits. Nano Lett., 19, 7164(2019).

    [245] Y. Zhu et al. Hybrid integration of deterministic quantum dot-based single-photon sources with CMOS-compatible silicon carbide photonics. Laser Photonics Rev., 16, 2200172(2022).

    [246] T.-J. Lu et al. Bright high-purity quantum emitters in aluminum nitride integrated photonics. ACS Photonics, 7, 2650(2020).

    [247] F. Najafi et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun., 6, 5873(2015).

    [248] N. H. Wan et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature, 583, 226(2020).

    [249] D. M. Lukin et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photonics, 14, 330(2020).

    [250] C. Xiong, W. H. P. Pernice, H. X. Tang. Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett., 12, 3562(2012).

    [251] K. Powell et al. Integrated silicon carbide electro-optic modulator. Nat. Commun., 13, 1851(2022).

    [252] C. Wang et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl., 10, 139(2021).

    [253] H.-K. Lo, X. Ma, K. Chen. Decoy state quantum key distribution. Phys. Rev. Lett., 94, 230504(2005).

    [254] D. Rosenberg et al. Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett., 98, 010503(2007).

    [255] V. Scarani et al. The security of practical quantum key distribution. Rev. Mod. Phys., 81, 1301(2009).

    [256] E. Diamanti et al. Practical challenges in quantum key distribution. NPJ Quantum Inf., 2, 16025(2016).

    [257] H.-L. Yin et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett., 117, 190501(2016).

    [258] M. Lucamarini et al. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature, 557, 400(2018).

    [259] T. Kupko et al. Tools for the performance optimization of single-photon quantum key distribution. NPJ Quantum Inf., 6, 29(2020).

    [260] D. A. Vajner et al. Quantum communication using semiconductor quantum dots. Adv. Quantum Technol., 5, 2100116(2022).

    [261] N. Gisin, S. Pironio, N. Sangouard. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett., 105, 070501(2010).

    [262] A. M. Childs. Secure assisted quantum computation. Quantun Inf. Comput., 5, 456(2005).

    [263] S. Wehner, D. Elkouss, R. Hanson. Quantum internet: a vision for the road ahead. Science, 362, eaam9288(2018).

    [264] S. Ritter et al. An elementary quantum network of single atoms in optical cavities. Nature, 484, 195(2012).

    [265] B. Hensen et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526, 682(2015).

    [266] C. Nguyen et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett., 123, 183602(2019).

    [267] Y. Yu et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578, 240(2020).

    [268] D. Lago-Rivera et al. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature, 594, 37(2021).

    [269] S. Daiss et al. A quantum-logic gate between distant quantum-network modules. Science, 371, 614(2021).

    [270] T. van Leent et al. Entangling single atoms over 33 km telecom fibre. Nature, 607, 69(2022).

    [271] P. K. Shandilya et al. Diamond integrated quantum nanophotonics: spins, photons and phonons. J. Light. Technol., 40, 7538(2022).

    [272] D. M. Jackson et al. Optimal purification of a spin ensemble by quantum-algorithmic feedback. Phys. Rev. X, 12, 031014(2022).

    [273] M. Zopf et al. Entanglement swapping with semiconductor-generated photons violates Bell’s inequality. Phys. Rev. Lett., 123, 160502(2019).

    [274] F. Basso Basset et al. Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett., 123, 160501(2019).

    [275] E. Schöll et al. Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons. Phys. Rev. Lett., 125, 233605(2020).

    [276] C. Schimpf et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett., 118, 100502(2021).

    [277] B. Dzurnak et al. Quantum key distribution with an entangled light emitting diode. Appl. Phys. Lett., 107, 261101(2015).

    [278] C. Schimpf et al. Quantum cryptography with highly entangled photons from semiconductor quantum dots. Sci. Adv., 7, eabe8905(2021).

    [279] F. Basso Basset et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv., 7, eabe6379(2021).

    [280] C. Schimpf et al. Entanglement-based quantum key distribution with a blinking-free quantum dot operated at a temperature up to 20 K. Adv. Photonics, 3, 065001(2021).

    [281] M. Bozzio et al. Enhancing quantum cryptography with quantum dot single-photon sources. NPJ Quantum Inf., 8, 104(2022).

    [282] J. Kołodyński et al. Device-independent quantum key distribution with single-photon sources. Quantum, 4, 260(2020).

    [283] M. Anderson et al. Quantum teleportation using highly coherent emission from telecom C-band quantum dots. NPJ Quantum Inf., 6, 14(2020).

    [284] N. Akopian et al. Hybrid semiconductor-atomic interface: slowing down single photons from a quantum dot. Nat. Photonics, 5, 230(2011).

    [285] R. Keil et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun., 8, 15501(2017).

    [286] S. Seidl et al. Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot. Phys. Rev. B, 72, 195339(2005).

    [287] R. Trotta et al. Wavelength-tunable sources of entangled photons interfaced with atomic vapours. Nat. Commun., 7, 10375(2016).

    [288] J. Q. Grim et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater., 18, 963(2019).

    [289] T. Jin et al. Generation of polarization-entangled photons from self-assembled quantum dots in a hybrid quantum photonic chip. Nano Lett., 22, 586(2022).

    [290] J. J. Finley et al. Quantum-confined Stark shifts of charged exciton complexes in quantum dots. Phys. Rev. B, 70, 201308(2004).

    [291] A. Högele et al. Voltage-controlled electron-hole interaction in a single quantum dot. J. Supercond., 18, 2(2005).

    [292] Z.-H. Xiang et al. A tuneable telecom wavelength entangled light emitting diode deployed in an installed fibre network. Commun. Phys., 3, 121(2020).

    [293] M. Reindl et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett., 17, 4090(2017).

    [294] X. You et al. Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photonics, 4, 066003(2022).

    [295] H. G. Babin et al. Charge tunable GaAs quantum dots in a photonic n-i-p diode. Nanomaterials, 11, 2703(2021).

    [296] E. M. González-Ruiz et al. Violation of Bell’s inequality with quantum-dot single-photon sources. Phys. Rev. A, 106, 012222(2022).

    [297] M. Lasota et al. Linear optics schemes for entanglement distribution with realistic single-photon sources. Phys. Rev. A, 90, 033836(2014).

    [298] S. Thomas, P. Senellart. The race for the ideal single-photon source is on. Nat. Nanotechnol., 16, 367(2021).

    [299] J. S. Pelc et al. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Opt. Express, 20, 27510(2012).

    [300] S. Zaske et al. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett., 109, 147404(2012).

    [301] C. L. Morrison et al. A bright source of telecom single photons based on quantum frequency conversion. Appl. Phys. Lett., 118, 174003(2021).

    [302] B. Da Lio et al. A pure and indistinguishable single-photon source at telecommunication wavelength. Adv. Quantum Technol., 5, 2200006(2022).

    [303] I. Agha et al. Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides. Opt. Lett., 37, 2997(2012).

    [304] B. A. Bell et al. Frequency conversion in silicon in the single photon regime. Opt. Express, 24, 5235(2016).

    [305] Q. Li, M. Davanço, K. Srinivasan. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photonics, 10, 406(2016).

    [306] X. Lu et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photonics, 13, 593(2019).

    [307] A. Singh et al. Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 6, 563(2019).

    [308] N. Srocka et al. Deterministically fabricated quantum dot single-photon source emitting indistinguishable photons in the telecom O-band. Appl. Phys. Lett., 116, 231104(2020).

    [309] T. Lettner et al. Strain-controlled quantum dot fine structure for entangled photon generation at 1550 nm. Nano Lett., 21, 10501(2021).

    [310] P. Holewa et al. Bright quantum dot single-photon emitters at telecom bands heterogeneously integrated on Si. ACS Photonics, 9, 2273(2022).

    [311] C.-M. Lee et al. Bright telecom-wavelength single photons based on a tapered nanobeam. Nano lett., 21, 323(2020).

    [312] J.-P. Jahn et al. An artificial Rb atom in a semiconductor with lifetime-limited linewidth. Phys. Rev. B, 92, 245439(2015).

    [313] H. Huang et al. Electrically-pumped wavelength-tunable GaAs quantum dots interfaced with rubidium atoms. ACS Photonics, 4, 868(2017).

    [314] J. Wolters et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett., 119, 060502(2017).

    [315] J. Guo et al. High-performance Raman quantum memory with optimal control in room temperature atoms. Nat. Commun., 10, 148(2019).

    [316] G. Buser et al. Single-photon storage in a ground-state vapor cell quantum memory. PRX Quantum, 3, 020349(2022).

    [317] S. Aaronson, A. Arkhipov. The computational complexity of linear optics. 43rd Annual ACM Symposium on Theory of Computing, 333(2011).

    [318] D. J. Brod et al. Photonic implementation of boson sampling: a review. Adv. Photonics, 1, 034001(2019).

    [319] J. I. Cirac, P. Zoller. How to manipulate cold atoms. Science, 301, 176(2003).

    [320] M. A. Broome et al. Photonic boson sampling in a tunable circuit. Science, 339, 794(2013).

    [321] J. B. Spring et al. Boson sampling on a photonic chip. Science, 339, 798(2013).

    [322] M. Tillmann et al. Experimental boson sampling. Nat. Photonics, 7, 540(2013).

    [323] A. Crespi et al. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics, 7, 545(2013).

    [324] H. Wang et al. High-efficiency multiphoton boson sampling. Nat. Photonics, 11, 361(2017).

    [325] J. C. Loredo et al. Boson sampling with single-photon fock states from a bright solid-state source. Phys. Rev. Lett., 118, 130503(2017).

    [326] C. S. Hamilton et al. Gaussian boson sampling. Phys. Rev. Lett., 119, 170501(2017).

    [327] H.-S. Zhong et al. Quantum computational advantage using photons. Science, 370, 1460(2020).

    [328] H.-S. Zhong et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 127, 180502(2021).

    [329] L. S. Madsen et al. Quantum computational advantage with a programmable photonic processor. Nature, 606, 75(2022).

    [330] C. Sparrow et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature, 557, 660(2018).

    [331] A. Peruzzo et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun., 5, 4213(2014).

    [332] Y. Cao et al. Quantum chemistry in the age of quantum computing. Chem. Rev., 119, 10856(2019).

    [333] Y. Cao, J. Romero, A. Aspuru-Guzik. Potential of quantum computing for drug discovery. IBM J. Res. Dev., 62, 1(2018).

    [334] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46(2001).

    [335] N. Kiesel et al. Linear optics controlled-phase gate made simple. Phys. Rev. Lett., 95, 210505(2005).

    [336] A. Politi et al. Silica-on-silicon waveguide quantum circuits. Science, 320, 646(2008).

    [337] J.-P. Li et al. Heralded nondestructive quantum entangling gate with single-photon sources. Phys. Rev. Lett., 126, 140501(2021).

    [338] M. H. Appel et al. Entangling a hole spin with a time-bin photon: a waveguide approach for quantum dot sources of multiphoton entanglement. Phys. Rev. Lett., 128, 233602(2022).

    [339] H. Pichler et al. Universal photonic quantum computation via time-delayed feedback. Proc. Natl. Acad. Sci. USA, 114, 11362(2017).

    [340] S. E. Economou, N. Lindner, T. Rudolph. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett., 105, 093601(2010).

    [341] B. Bartlett, A. Dutt, S. Fan. Deterministic photonic quantum computation in a synthetic time dimension. Optica, 8, 1515(2021).

    [342] R. Raussendorf, H. J. Briegel. A one-way quantum computer. Phys. Rev. Lett., 86, 5188(2001).

    [343] P. Walther et al. Experimental one-way quantum computing. Nature, 434, 169(2005).

    [344] X.-C. Yao et al. Experimental demonstration of topological error correction. Nature, 482, 489(2012).

    [345] Y. Tokunaga et al. Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. Phys. Rev. Lett., 100, 210501(2008).

    [346] H.-S. Zhong et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett., 121, 250505(2018).

    [347] C.-W. Yang et al. Sequential generation of multiphoton entanglement with a Rydberg superatom. Nat. Photonics, 16, 658(2022).

    [348] P. Thomas et al. Efficient generation of entangled multiphoton graph states from a single atom. Nature, 608, 677(2022).

    [349] J.-P. Li et al. Multiphoton graph states from a solid-state single-photon source. ACS Photonics, 7, 1603(2020).

    [350] D. Istrati et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun., 11, 5501(2020).

    [351] N. H. Lindner, T. Rudolph. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett., 103, 113602(2009).

    [352] I. Schwartz et al. Deterministic generation of a cluster state of entangled photons. Science, 354, 434(2016).

    [353] D. Cogan et al. A deterministic source of indistinguishable photons in a cluster state(2021).

    [354] N. Coste et al. High-rate entanglement between a semiconductor spin and indistinguishable photons(2022).

    [355] J. Lee et al. A quantum dot as a source of time-bin entangled multi-photon states. Quantum Sci. Technol., 4, 025011(2019).

    [356] K. Tiurev et al. High-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Phys. Rev. A, 105, L030601(2022).

    [357] M. Gimeno-Segovia et al. From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett., 115, 020502(2015).

    [358] M. Gimeno-Segovia, T. Rudolph, S. E. Economou. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett., 123, 070501(2019).

    [359] A. Greilich et al. Optical control of one and two hole spins in interacting quantum dots. Nat. Photonics, 5, 702(2011).

    [360] K. Azuma, K. Tamaki, H.-K. Lo. All-photonic quantum repeaters. Nat. Commun., 6, 6787(2015).

    [361] D. Buterakos, E. Barnes, S. E. Economou. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys. Rev. X, 7, 041023(2017).

    [362] J. Borregaard et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X, 10, 021071(2021).

    [363] R. S. Daveau et al. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide. Optica, 4, 178(2017).

    [364] C.-M. Lee et al. A fiber-integrated nanobeam single photon source emitting at telecom wavelengths. Appl. Phys. Lett., 114, 171101(2019).

    [365] X. Zhou et al. High-efficiency shallow-etched grating on GaAs membranes for quantum photonic applications. Appl. Phys. Lett., 113, 251103(2018).

    [366] M. Arcari et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett., 113, 093603(2014).

    [367] J. Liu et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol., 14, 586(2019).

    [368] W. B. Jeon et al. Plug-and-play single-photon devices with efficient fiber-quantum dot interface. Adv. Quantum Technol., 5, 2200022(2022).

    [369] X. Xu et al. ‘Plug and play’ single-photon sources. Appl. Phys. Lett., 90, 061103(2007).

    [370] A. Mohan et al. Record-low inhomogeneous broadening of site-controlled quantum dots for nanophotonics. Small, 6, 1268(2010).

    [371] K. D. Jöns et al. Triggered indistinguishable single photons with narrow line widths from site-controlled quantum dots. Nano Lett., 13, 126(2012).

    [372] L. Yang et al. Optical spectroscopy of site-controlled quantum dots in a Schottky diode. Appl. Phys. Lett., 108, 233102(2016).

    [373] I. S. Han, Y.-R. Wang, M. Hopkinson. Ordered GaAs quantum dots by droplet epitaxy using in situ direct laser interference patterning. Appl. Phys. Lett., 118, 142101(2021).

    [374] J. Zhang et al. On-chip scalable highly pure and indistinguishable single-photon sources in ordered arrays: path to quantum optical circuits. Sci. Adv., 8, eabn9252(2022).

    [375] M. C. Löbl et al. Correlations between optical properties and Voronoi-cell area of quantum dots. Phys. Rev. B, 100, 155402(2019).

    [376] T. Pregnolato et al. Deterministic positioning of nanophotonic waveguides around single self-assembled quantum dots. APL Photonics, 5, 086101(2020).

    [377] S. Liu, K. Srinivasan, J. Liu. Nanoscale positioning approaches for integrating single solid-state quantum emitters with photonic nanostructures. Laser Photonics Rev., 15, 2100223(2021).

    [378] S. Liu et al. Dual-resonance enhanced quantum light-matter interactions in deterministically coupled quantum-dot-micropillars. Light Sci. Appl., 10, 158(2021).

    [379] S.-W. Xu et al. Bright single-photon sources in the telecom band by deterministically coupling single quantum dots to a hybrid circular Bragg resonator. Photonics Res., 10, B1(2022).

    [380] B. D. Gerardot et al. Optical pumping of a single hole spin in a quantum dot. Nature, 451, 441(2008).

    [381] C. H. H. Schulte et al. Quadrature squeezed photons from a two-level system. Nature, 525, 222(2015).

    [382] X. Xu et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science, 317, 929(2007).

    [383] A. N. Vamivakas et al. Spin-resolved quantum-dot resonance fluorescence. Nat. Phys., 5, 198(2009).

    [384] Y. He et al. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot. Phys. Rev. Lett., 114, 097402(2015).

    [385] J. Loredo et al. Generation of non-classical light in a photon-number superposition. Nat. Photonics, 13, 803(2019).

    [386] A. Kurzmann et al. Auger recombination in self-assembled quantum dots: quenching and broadening of the charged exciton transition. Nano Lett., 16, 3367(2016).

    [387] H. Mannel et al. Auger and spin dynamics in a self-assembled quantum dot(2021).

    [388] M. C. Löbl et al. Radiative Auger process in the single-photon limit. Nat. Nanotechnol., 15, 558(2020).

    [389] C. Spinnler et al. Optically driving the radiative Auger transition. Nat. Commun., 12, 6575(2021).

    [390] Y. Huo et al. A light-hole exciton in a quantum dot. Nat. Phys., 10, 46(2014).

    [391] J. Zhang et al. Single photons on-demand from light-hole excitons in strain-engineered quantum dots. Nano Lett., 15, 422(2015).

    [392] M. Jeannin et al. Light-hole exciton in a nanowire quantum dot. Phys. Rev. B, 95, 035305(2017).

    [393] K. Moratis et al. Light hole states in a strained quantum dot: numerical calculation and phenomenological models. Phys. Rev. B, 103, 245304(2021).

    [394] X. Yuan et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun., 9, 3058(2018).

    [395] D. Sleiter, W. F. Brinkman. Using holes in GaAs as qubits: an estimate of the Rabi frequency in the presence of an external RF field. Phys. Rev. B, 74, 153312(2006).

    [396] S. G. Carter et al. Tunable coupling of a double quantum dot spin system to a mechanical resonator. Nano Lett., 19, 6166(2019).

    [397] I. Yeo et al. Strain-mediated coupling in a quantum dot–mechanical oscillator hybrid system. Nat. Nanotechnol., 9, 106(2014).

    [398] M. Munsch et al. Resonant driving of a single photon emitter embedded in a mechanical oscillator. Nat. Commun., 8, 76(2017).

    [399] A. Vogele et al. Quantum dot optomechanics in suspended nanophononic strings. Adv. Quantum Technol., 3, 1900102(2019).

    [400] J. Kettler et al. Inducing micromechanical motion by optical excitation of a single quantum dot. Nat. Nanotechnol., 16, 283(2021).

    Xiaoyan Zhou, Liang Zhai, Jin Liu. Epitaxial quantum dots: a semiconductor launchpad for photonic quantum technologies[J]. Photonics Insights, 2022, 1(2): R07
    Download Citation