• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 230001 (2020)
Xiqi Feng1、* and Xiaozhen Han2、*
Author Affiliations
  • 1Key Laboratory of Transparent and Opto-Functional Inorganic Materials, Chinese Academy of Sciences, Shanghai 200050, China
  • 2Gem Materials Laboratory, Shanghai Jian Qiao University, Shanghai 201306, China
  • show less
    DOI: 10.3788/LOP57.230001 Cite this Article Set citation alerts
    Xiqi Feng, Xiaozhen Han. Research Progress of Defects in Ti∶Sapphire Laser Crystals[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230001 Copy Citation Text show less
    References

    [1] Moulton P. Ti-doped sapphire: tunable solid-state laser[J]. Optics News, 8, 9(1982). http://www.opticsinfobase.org/on/abstract.cfm?uri=on-8-6-9

    [2] Zhang B H, Xu J, Yang Q H et al. New progress of ultrafast and ultraintense lasers based on Ti∶sapphire[J]. Laser & Optoelectronics Progress, 50, 040003(2013).

    [3] Xu J, Su L B, Xu X D et al. Recent developments and research frontier of laser crystals[J]. Journal of Inorganic Materials, 21, 1025-1030(2006).

    [4] Chen Y S, Che H S. Development status of femtosecond laser[J]. Laser & Optoelectronics Progress, 40, 1-5(2003).

    [5] Cao H, Gan Z B, Liang X Y et al. Optical property measurements of 235 mm large-scale Ti∶sapphire crystal[J]. Chinese Optics Letters, 16, 071401(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180711000168JgMiPl

    [6] Hang Y, Xu M, Zhang L H et al. Domestic large sized Ti∶sapphire crystal assists the world's strongest pulsed laser amplification output[J]. Journal of Synthetic Crystals, 48, 809-811(2019).

    [7] Li W Q, Gan Z B, Yu L H et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 43, 5681-5684(2018). http://www.ncbi.nlm.nih.gov/pubmed/30439927

    [8] Liu J, Zeng Z N, Liang X Y et al. Development trend of ultrafast and ultraintense lasers and their scientific application[J]. Strategic Study of CAE, 22, 042-048(2020).

    [9] Roth P W. MacLean A J, Burns D, et al. Directly diode-laser-pumped Ti∶sapphire laser[J]. Optics Letters, 34, 3334-3336(2009).

    [10] Durfee C G, Storz T, Garlick J et al. Direct diode-pumped Kerr-lens mode-locked Ti∶sapphire laser[J]. Optics Express, 20, 13677-13683(2012).

    [11] Gürel K, Wittwer V J, Hoffmann M et al. Green-diode-pumped femtosecond Ti∶Sapphire laser with up to 450 mW average power[J]. Optics Express, 23, 30043-30048(2015).

    [12] Rohrbacher A, Olarte O E, Villamaina V et al. Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti∶sapphire oscillator generating 5 nJ 82 fs pulses[J]. Optics Express, 25, 10677(2017). http://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-9-10677

    [13] Coyle J C E, Kemp A J, Hopkins J M et al. Ultrafast diode-pumped Ti∶sapphire laser with broad tunability[J]. Optics Express, 26, 6826-6832(2018).

    [14] Wang X L, Hu X H, Xu P et al. Ti∶sapphire femtosecond pulses pumped directly by green diode lasers[J]. Chinese Journal of Lasers, 44, 0701002(2017).

    [15] Huang L, Chen Y, Cao T et al. -01-09(2018).

    [16] Xue Y H, Wang Q Y, Chai L et al. A novel LD pumped Yb∶GSO laser operating at 1090 nm with low threshold[J]. Acta Physica Sinica, 55, 456-459(2006).

    [17] Lucca A, Jacquemet M, Druon F et al. High-power tunable diode-pumped Yb 3+∶CaF2 laser[J]. Optics Letters, 29, 1879-1881(2004).

    [18] Moulton P F, Cederberg J G, Stevens K T et al. Optimized InGaN-diode pumping of Ti∶sapphire crystals[J]. Optical Materials Express, 9, 2131-2146(2019). http://www.researchgate.net/publication/332312631_Optimized_InGaN-diode_pumping_of_Tisapphire_crystals

    [19] Gan F X, Deng P Z[M]. Shanghai: Shanghai Scientific & Technical Publishers, 224(1996).

    [20] Moulton P F, Cederberg J G, Stevens K T et al. Characterization of absorption bands in Ti∶sapphire crystals[J]. Optical Materials Express, 9, 2216-2251(2019).

    [21] Aggarwal R L, Sanchez A, Stuppi M M et al. Residual infrared absorption in as-grown and annealed crystals of Ti∶Al2O3[J]. IEEE Journal of Quantum Electronics, 24, 1003-1008(1988).

    [22] Agullo-Lopez F[M]. Catlow C R A, Townsend P D. Point defects in materials(1988).

    [23] Matsunaga K, Nakamura A, Yamamoto T et al. First-principles study of defect energetics in titanium-doped alumina[J]. Physical Review B, 68, 214102(2003).

    [24] Dienes G J, Welch D O, Fischer C R et al. Shell-model calculation of some point-defect properties in α-Al2O3[J]. Physical Review B, 11, 3060-3070(1975).

    [25] Oishi Y, Kingery W D. Self-diffusion of oxygen in single crystal and polycrystalline aluminum oxide[J]. Journal of Chemical Physics, 33, 480-486(1960).

    [26] Catlow C R A, James R, Mackrodt W C et al. Defect energetics in α-Al2O3 and rutile TiO2[J]. Physical Review B, 25, 1006-1026(1982).

    [27] Lagerlöf K P D, Grimes R W. The defect chemistry of sapphire (α-Al2O3)[J]. Acta Materialia, 46, 5689-5700(1998).

    [28] Price D B, Chinn R E. McNerney K R, et al. Fracture toughness and strength of 96% alumina[J]. American Ceramic Society Bulletin, 76, 509244(1997).

    [29] Xue L A, Chen I W. Superplastic alumina at temperatures below 1300 ℃ using charge-compensating dopants[J]. Journal of the American Ceramic Society, 79, 233-238(1996). http://onlinelibrary.wiley.com/doi/10.1111/j.1151-2916.1996.tb07903.x/abstract

    [30] Koripella C R, Kröger F A. Electrical conductivity of Al2O3:Fe+Y[J]. Journal of American Ceramic Society, 69, 888-896(1986).

    [31] Evans B D. Optical transmission in undoped crystalline α-Al2O3 grown by several techniques[J]. Journal of Applied Physics, 70, 3995-3997(1991).

    [32] Matsunaga K, Tanaka T, Yamamoto T et al. First-principles calculations of intrinsic defects in Al2O3[J]. Physical Review B, 68, 085110(2003).

    [33] Matsunaga K, Mizoguchi T, Nakamura A et al. Formation of titanium-solute clusters in alumina: a first-principles study[J]. Applied Physics Letters, 84, 4795-4797(2004).

    [34] Brik M G. Ab-initio studies of the electronic and optical properties of Al2O3∶ Ti 3+ laser crystals[J]. Physica B: Condensed Matter, 532, 178-183(2018).

    [35] Bramley R. McCool M B. EPR of Fe 3+ pairs in α-Al2O3[J]. Journal of Physics C: Solid State Physics, 9, 1793-1808(1976).

    [36] Mattson S M, Rossman G R. Identifying characteristics of charge transfer transitions in minerals[J]. Physics and Chemistry of Minerals, 14, 94-99(1987).

    [37] Townsend M G. Visible charge transfer band in blue sapphire[J]. Solid State Communications, 6, 81-83(1968).

    [38] Han X Z, Feng X Q, Kang Y et al. Intervalence charge transfer transition of Co 2+-Ti 4+ ion pair in α-Al2O3∶Co, Ti crystal[J]. Journal of Alloys and Compounds, 768, 1058-1063(2018).

    [39] Mohapatra S K, Kröger F A. Defect structure of α-Al2O3 doped with titanium[J]. Journal of the American Ceramic Society, 60, 381-387(1977).

    [40] Fritsch E, Rossman G R. An update on color in gems. Part 2: colors involving multiple atoms and color centers[J]. Gems & Gemology, 24, 3-15(1988).

    [41] Fritsch E, Rossman G R. Blue color in sapphire caused by Fe 2+/Fe 3+ intervalence charge transfer[J]. Gems & Gemology, 29, 151(1993).

    [42] Wu C J. Figure of merit for Al2O3∶Ti laser crystal[J]. Journal of Synthetic Crystals, 21, 31-36(1992).

    [43] Yamaga M, Yosida T, Hara S et al. Optical and electron spin resonance spectroscopy of Ti 3+ and Ti 4+ in Al2O3[J]. Journal of Applied Physics, 75, 1111-1117(1994).

    [44] Han X Z, Feng X Q, Li W F et al. One kind of new Ti 3+ luminous center in Ti∶Al2O3 crystals[J]. Optical Materials, 105, 109881(2020).

    [45] Moon A R, Phillips M R. Defect clustering and color in Fe, Ti∶α-Al2O3[J]. Journal of the American Ceramic Society, 77, 356-367(1994).

    [46] Bristow J K, Tiana D, Parker S C et al. Defect chemistry of Ti and Fe impurities and aggregates in Al2O3[J]. Journal of Materials Chemistry, 2, 6198-6208(2014).

    [47] Xu J[M]. Laser materials science and technology frontier, 289-290(2007).

    [48] Lu Y, Lin L B, Lu T C et al. The study of the effect of powder production technique on the Ti ion valance in the crystal growth of Al2 O∶Ti[J]. Journal of Sichuan University (Natural Science Edition), 34, 608-612(1997).

    [49] Kokta M R. Crystal growth and characterization of oxides host crystals for tunable lasers[J]. Proceedings of SPIE, 0681, 50-57(1987).

    [50] Cao Y H, Yang L, Liu F Y. A review of Al2O3∶Ti 3+ growth and its characteristics[J]. Journal of Synthetic Crystals, 21, 95-101(1992).

    [51] Fahey R E, Strauss A J, Sanchez A et al. Growth of laser-quality Ti∶Al2O3 crystals by a seeded gradient-freeze technique[M]. ∥ Budgor A B, Esterowitz L, DeShazer L G. Tunable solid state lasers II. Springer series in optical sciences. Berlin: Springer, 52, 82-88(1986).

    [52] Hu K Y, Xu J, Wang C Y et al. Study on properties of Ti∶sapphire crystals doped carbon grown by the kyropoulos technique(KY)[J]. Journal of Inorganic Materials, 27, 1321-1324(2012).

    [53] Kravchenko L Y, Fil D V. Defect complexes in Ti-doped sapphire: a first principles study[J]. Journal of Applied Physics, 123, 023104(2018).

    [55] Kryvonosov I V, Lytvynov L A. Properties of Ti-sapphire as laser material[J]. Crystallography Reports, 57, 967-973(2012).

    [56] Nizhankovskii S V. Sidel'nikova N S, Baranov V V. Optical absorption and color centers in large Ti∶sapphire crystals grown by horizontally directed crystallization under reducing conditions[J]. Physics of the Solid State, 57, 781-786(2015).

    [57] Weakliem H A. McClure D S. Symmetry of transition metal impurity sites in crystals as inferred from optical spectra[J]. Journal of Applied Physics, 33, 347-354(1962).

    [58] Nelson E D, Wong J Y, Schawlow A L. Far infrared spectra of Al2O3∶Cr 3+ and Al2O3∶Ti 3+[J]. Physical Review, 156, 298-308(1967).

    [59] Murayama M, Nakayama Y, Yamazaki K et al. Watt-class green (530 nm) and blue (465 nm) laser diodes[J]. Physica Status Solidi A, 215, 1700513(2018).

    [60] Lupei A, Lupei V, Ionescu C et al. Spectroscopy of Ti 3+∶α-Al2O3[J]. Optics Communications, 59, 36-38(1986).

    [61] Nehari A, Brenier A, Panzer G et al. Ti-doped sapphire(Al2O3) single crystals grown by the kyropoulos technique and optical characterizations[J]. Crystal Growth & Design, 11, 445-448(2011).

    [62] Ning K J, Liu Y C, Ma J et al. Growth and characterization of large-scale Ti∶sapphire crystal using heat exchange method for ultra-fast ultra-high-power lasers[J]. CrystEngComm, 17, 2801-2805(2015).

    [63] Fahey R E, Strauss A J, Sanchez A. Growth of Ti∶Al2O3 crystals by a gradient-freeze technique. [C]∥Advanced Solid State Lasers, June 4, 1986, Zigzag, Oregon, United States. Washington, D.C.: OSA, ThA3(1986).

    [64] Xu M, Si J L, Zhang X C et al. Study on growth of large-sized Ti∶Al2O3 crystals by the temperature gradient technique[J]. Journal of Synthetic Crystals, 43, 7-12(2014).

    [65] Alombert-Goget G, Li H, Guyot Y et al. Luminescence and coloration of undoped and Ti-doped sapphire crystals grown by Czochralski technique[J]. Journal of Luminescence, 169, 516-519(2016).

    [66] Tanabe Y, Sugano S. On the absorption spectra of complex ions II[J]. Journal of the Physical Society of Japan, 9, 766-779(1954).

    [67] Linz A, Newnham R E. Ultraviolet absorption spectra in ruby[J]. Physical Review, 123, 500-501(1961).

    [68] Schawlow A L, Wood D L, Clogston A M. Electronic spectra of exchange-coupled ion pairs in crystals[J]. Physical Review Letters, 3, 271-273(1959).

    [69] Powell R C, Dibartolo B. Optical properties of heavily doped ruby[J]. Physica Status Solidi A, 10, 315-357(1972).

    [70] Imbusch G F, Kopelman R. Optical spectroscopy of electronic centers in solids[M]. ∥ Yen W M, Selzer P M. Laser spectroscopy of solids. Topics in Applied Physics. Berlin: Springer, 49, 1-37(1981).

    Xiqi Feng, Xiaozhen Han. Research Progress of Defects in Ti∶Sapphire Laser Crystals[J]. Laser & Optoelectronics Progress, 2020, 57(23): 230001
    Download Citation