• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 70101 (2018)
Sun Daozhong1, Ji Changdong1、*, and Ma Chuanning2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.070101 Cite this Article Set citation alerts
    Sun Daozhong, Ji Changdong, Ma Chuanning. Accuracy Research of Commonly Used Remote Sensing Upward Longwave Radiation Products in Polar Regions[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70101 Copy Citation Text show less
    References

    [1] Nussbaumer E A, Pinker R T. Estimating surface long-wave radiative fluxes at global scale[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(665): 1083-1093.

    [2] Trigo I F, Barroso C, Viterbo P, et al. Estimation of downward long-wave radiation at the surface combining remotely sensed data and NWP data[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D24): D24118.

    [3] Kratz D P, Gupta S K, Wilber A C, et al. Validation of the CERES edition 2B surface-only flux algorithms[J]. Journal of Applied Meteorology & Climatology, 2010, 49(1): 164-180.

    [4] Wang J. Method for the remote sensing retrieval of surface longwave radiation[D]. Taiyuan: Shanxi University, 2014.

    [5] Chen S W, Xu N, Dai T, et al. Sensitivity of intercalibration uncertainty on spectral sampling of space-based radiance standard[J]. Acta Optica Sinica, 2018, 38(1): 0128004.

    [6] Zhang X Y, Wang J. Estimation of land surface temperature using geostationary meteorological satellite data[J]. Remote Sensing Technology and Application, 2013, 28(1): 12-17.

    [7] Zhang X Y, Wang J. Estimation of surface soil moisture from onboard FY-2D satellite multi-temporal data[J]. Chinese Journal of Eco-Agriculture, 2012, 20(7): 882-887.

    [8] Gui S, Liang S L, Li L. Validation of surface radiation data provided by the CERES over the Tibetan Plateau[C]. International Conference on Geoinformatics, 2009: 10940576.

    [9] Gui S, Liang S L, Li L. Evaluation of satellite-estimated surface longwave radiation using ground-based observations[J]. Journal of Geophysical Research Atmospheres, 2010, 115(D18): D18214.

    [10] Yan H R, Huang J P, Minnis P, et al. Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau[J]. Remote Sensing of Environment, 2011, 115(6): 1489-1500.

    [11] Wang X C, Liu J P, Yu Y Q, et al. Polar climate simulation in FGOALS_g1.1[J]. Acta Meteorologica Sinica, 2009, 67(6): 961-972.

    [12] Cox S J, Stackhouse P W, Gupta S K, et al. NASA/GEWEX shortwave surface radiation budget: integrated data product with reprocessed radiance, cloud, and meteorology inputs, and new surface albedo treatment[C]. International Radiation Symposium Radiation Processes in the Atmosphere & Ocean, 2017, 1810(1): 194-211.

    [13] Randall D, Krueger S, Bretherton C. Confronting models with data: the GEWEX cloud systems study[J]. Bulletin of the American Meteorological Society, 2003, 84(4): 455-469.

    [14] Fu Q, Liou K N, Cribb M C, et al. Multiple scattering parameterization in thermal infrared radiative transfer[J]. Journal of the Atmospheric Sciences, 1997, 54(24): 2799-2812.

    [15] Gupta K S. A parameterization for longwave surface radiation from sun-synchronous satellite data: recent improvements[J]. Journal of Applied Meteorology, 1992, 31(12): 203-222.

    [16] Zhang R. The study of the estimation of downward radiation based on MODIS data[D]. Xi′an: Northwest University, 2015.

    [17] Zhang D L, Huang J P, Liu Y Z, et al. Analysis on temporal and spatial variations for cloud radiative forcing over Qinghai-Xizang Plateau using CERES (SYN) data[J]. Plateau Meteorology, 2012, 31(5): 1192-1202.

    [18] Kato S, Loeb N G, Rutan D A, et al. Clouds and the Earth′s radiant energy system (CERES) data products for climate research[J]. Journal of the Meteorological Society of Japan, 2016, 93(6): 597-612.

    [19] Gui S. Satellite remote sensing of surface net radiation[D]. Wuhan: Wuhan University, 2010.

    [20] Zhang T P, Stackhouse P W, Jr Gupta S K, et al. The validation of the GEWEX SRB surface longwave flux data products using BSRN measurements[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 150: 134-147.

    [21] Driemel A, Knig-Langlo G, Sieger R, et al. The world radiation monitoring center of the baseline surface radiation network: status 2017[C]. EGU General Assembly Conference, 2017, 19: 2910.

    [22] Mcdonald K R, Enloe Y, Di L P, et al. Data integration support to the coordinated enhanced observing period project (CEOP)[M].∥ Di L P, Ramapriyan H K. Standard-based data and information systems for Earth observation. Heidelberg: Springer, 2009: 27-36.

    [23] Yang J Q, Luo J J, Xu J, et al. Calculation of infrared radiation atmospheric transmittance based on CART[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030101.

    [24] Zhang F, Qi L L, Ji W, et al. Influence of atmosphere in different areas on middle-far infrared radiation transmission[J]. Acta Optica Sinica, 2017, 37(4): 0401002.

    [25] Huang S, Jing X, Tan F F, et al. Measurement and calibration methods for total atmospheric continuous transmittance[J]. Chinese Journal of Lasers, 2017, 44(7): 0710001.

    Sun Daozhong, Ji Changdong, Ma Chuanning. Accuracy Research of Commonly Used Remote Sensing Upward Longwave Radiation Products in Polar Regions[J]. Laser & Optoelectronics Progress, 2018, 55(7): 70101
    Download Citation