• Spectroscopy and Spectral Analysis
  • Vol. 41, Issue 7, 2077 (2021)
Qi-xin HE*, Jia-kun LI, and Qi-bo FENG*;
Author Affiliations
  • MOE Key Lab of Luminescence and Optical Information, College of Science, Beijing Jiaotong University, Beijing 100044, China
  • show less
    DOI: 10.3964/j.issn.1000-0593(2021)07-2077-05 Cite this Article
    Qi-xin HE, Jia-kun LI, Qi-bo FENG. Development of a Mid-Infrared Cavity Enhanced Formaldehyde Detection System[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2077 Copy Citation Text show less
    Absorption spectrum of H2CO (1 mL·L-1) around 3.6 μm
    Fig. 1. Absorption spectrum of H2CO (1 mL·L-1) around 3.6 μm
    Tuning characteristics of the ICL
    Fig. 2. Tuning characteristics of the ICL
    Structure of the cavity enhanced H2CO detection systemEOM: Electro-optic phase modulator; PBS: Polarizing beam splitter; PZT: Piezoelectric transducer; PD: Photodiode detector
    Fig. 3. Structure of the cavity enhanced H2CO detection system
    EOM: Electro-optic phase modulator; PBS: Polarizing beam splitter; PZT: Piezoelectric transducer; PD: Photodiode detector
    The error signal and the cavity transmitted signal
    Fig. 4. The error signal and the cavity transmitted signal
    The cavity transmission signal with PDH dynamic locking
    Fig. 5. The cavity transmission signal with PDH dynamic locking
    (a) The measured signal of H2CO (10 mL·L-1); (b) Absorption spectrum of H2CO (1 mL·L-1)
    Fig. 6. (a) The measured signal of H2CO (10 mL·L-1); (b) Absorption spectrum of H2CO (1 mL·L-1)
    Relation between the amplitude of the cavity transmission signal and the concentration
    Fig. 7. Relation between the amplitude of the cavity transmission signal and the concentration
    The Allan variance analysis
    Fig. 8. The Allan variance analysis
    Qi-xin HE, Jia-kun LI, Qi-bo FENG. Development of a Mid-Infrared Cavity Enhanced Formaldehyde Detection System[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2077
    Download Citation