• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 2, 184 (2018)
JU Guo-Hao1、2、3、*, CHENG Zheng-Xi1, CHEN Yong-Ping1, and ZHONG Yan-Ping1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.02.010 Cite this Article
    JU Guo-Hao, CHENG Zheng-Xi, CHEN Yong-Ping, ZHONG Yan-Ping. Simulation of the multiplication zone for linear APD based on standard CMOS process[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 184 Copy Citation Text show less
    References

    [1] Radovanovic S, Annema A J, Nauta B. A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication[J]. IEEE J Solid-State Circuits, 2005, 40(8): 1706-1717.

    [2] Kubota M, Kato T, Suzuki S, et al. Ultra high sensitivity new super-HARP camera[J]. IEEE Trans. Broadcast. 1996, 42(3): 251-258.

    [3] Hynecek J. Impactron-A new solid state image intesifier[J]. In IEEE Workshaop on Charge-Coupled Devices & Advanced Image Sensor, 2001, page 197-200.

    [4] YangY, Barna S L, Campbell S, et al. A high dynamic range CMOS APS image sensor[J]. In IEEE Workshop on Charge-Coupled Devices & Advanced Image Sensor, 2001, page 137-140.

    [5] Huang W K, Liu Y C, Hsin Y M. A high-speed and high responsivity photodiode in standard CMOS technology[J]. Photon. Technol. Lett. 2007, 19(4):197-199.

    [6] Rochas A, Pauchard A R, Besse P A, et al. Low-noise silicon avalanche photodiodes fabricated in conventional CMOS tech -nologies[J]. IEEE Trans. Electron Devices, 2002, 49(3): 387-394.

    [8] Steindl B, Gaberl W, Enne R S, et al. Linear mode avalanche photodiode with 1-GHz bandwidth fabricated in 0.35-μm CMOS[J]. IEEE Photon. Technol. Lett. 2014, 26(15): 1511-1514.

    [9] Youn J S, Kang H S,Lee M J, et al. High-speed CMOS integrated optical receiver with an avalanche photodetector[J]. IEEE Photon. Technol. Lett. 2009, 21(20): 1553-1555.

    [10] Lee M J, Choi W Y. Area-dependent photodetection frequency response charac -terization of silicon avalanche photo -detectors fabricated with standard CMOS technology[J], IEEE Trans. Electron Devices,2013, 60(3): 998-1004.

    [11] Steindl B, Enne R, Schidl S, et al. Linear mode avalanche photodiode with high responsivity integrated in high-voltage CMOS[J]. IEEE Electron. Device Lett. 2014, 35(9): 897-899.

    [12] Van Overstraeten R. De Man H. Measurement of the ionization rates in diffused silicon p-n junctions[J]. Soild-State Electronics.1970, 13:583-608.

    [13] Kaneda T, Matsumoto H, Yamaoka T. A model for reach-through avalanche photodiode[J]. Journal of Applied Physics, 1976, 47(7): 3135-3139.

    [16] RueggH W. An optimized avalanche photodiode[J]. IEEE Trans. on Electron Devices, 1967, ED-14(5):239-251.

    [17] Caughey D M, Thomas R E. Carrier mobilities in silicon empirically related to doping and field[J]. Proceedings of the IEEE, 1967, 55(12): 2192-2193.

    [18] Kao Y C. The design of high-voltage high-power silicon junction rectifiers. IEEE Trans Electron Devices, 1970, 17(9): 657-660.

    [19] Enne R, Steindl B, Zimmermann H. Speed optimized linear-mode high-voltage CMOS avalanche photodiodes with high responsivity[J]. Optics Lett. 2015, 40(19): 4400-4403.

    JU Guo-Hao, CHENG Zheng-Xi, CHEN Yong-Ping, ZHONG Yan-Ping. Simulation of the multiplication zone for linear APD based on standard CMOS process[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 184
    Download Citation