• Laser & Optoelectronics Progress
  • Vol. 59, Issue 18, 1810002 (2022)
Feng Zhao1, Beibei Zhong1、*, and Hanqiang Liu2
Author Affiliations
  • 1School of Communication and Information Engineering & School of Artificial Intelligence, Xi’an University of Posts and Telecommunications, Xi’an 710121, Shaanxi , China
  • 2School of Computer Science, Shaanxi Normal University, Xi’an , Shaanxi 710119, China
  • show less
    DOI: 10.3788/LOP202259.1810002 Cite this Article Set citation alerts
    Feng Zhao, Beibei Zhong, Hanqiang Liu. Multi-Scale Residual U-Net Fundus Blood Vessel Segmentation Based on Attention Mechanism[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1810002 Copy Citation Text show less
    References

    [1] Fleming A D, Philip S, Goatman K A et al. Automated microaneurysm detection using local contrast normalization and local vessel detection[J]. IEEE Transactions on Medical Imaging, 25, 1223-1232(2006).

    [2] Cheung C Y L, Zheng Y F, Hsu W et al. Retinal vascular tortuosity, blood pressure, and cardiovascular risk factors[J]. Ophthalmology, 118, 812-818(2011).

    [3] Mukaida M, Okami Y, Suetake N et al. Contour line extraction of vein with use of special tracking strategy and fuzzy inference for arteriosclerosis diagnosis of retinal blood vessel[C], 435-440(2020).

    [4] Tian F, Li Y, Wang J. Retinal blood vessel segmentation based on multi-scale wavelet transform fusion[J]. Acta Optica Sinica, 41, 0410001(2021).

    [5] Emary E, Zawbaa H M, Hassanien A E et al. Retinal vessel segmentation based on possibilistic fuzzy c-means clustering optimised with cuckoo search[C], 1792-1796(2014).

    [6] Zhang B, Zhang L, Zhang L et al. Retinal vessel extraction by matched filter with first-order derivative of Gaussian[J]. Computers in Biology and Medicine, 40, 438-445(2010).

    [7] Dash J, Bhoi N. Retinal blood vessel extraction using morphological operators and Kirsch’s template[M]. Wang J C, Reddy R M, Prasad V K, et al. Soft computing and signal processing. Advances in intelligent systems and computing, 900, 603-611(2019).

    [8] Karthika D, Marimuthu A. Retinal image analysis using contourlet transform and multistructure elements morphology by reconstruction[C], 54-59(2014).

    [9] Osareh A, Shadgar B. Automatic blood vessel segmentation in color images of retina[J]. Iranian Journal of Science and Technology, Transaction B: Engineering, 33, 191-206(2009).

    [10] Akram M U, Khalid S, Tariq A et al. Detection and classification of retinal lesions for grading of diabetic retinopathy[J]. Computers in Biology and Medicine, 45, 161-171(2014).

    [11] Zhang S, Li Y P. Retinal vascular image segmentation based on improved HED network[J]. Acta Optica Sinica, 40, 0610002(2020).

    [12] Alom M Z, Hasan M, Yakopcic C et al. Recurrent residual convolutional neural network based on U-Net(R2U-Net) for medical image segmentation[EB/OL]. https://arvis.org/abs/1802.06955

    [13] Wu Y C, Xia Y, Song Y et al. Multiscale network followed network model for retinal vessel segmentation[M]. Frangi A F, Schnabel J A, Davatzikos C, et al. Medical image computing and computer assisted intervention-MICCAI 2018. Lecture notes in computer science, 11071, 119-126(2018).

    [14] Wu Y C, Xia Y, Song Y et al. Vessel-net: retinal vessel segmentation under multi-path supervision[M]. Shen D G, Liu T M, Peters T M, et al. Medical image computing and computer assisted intervention-MICCAI 2019. Lecture notes in computer science, 11764, 264-272(2019).

    [15] Zhang S H, Fu H Z, Yan Y G et al. Attention guided network for retinal image segmentation[M]. Shen D G, Liu T M, Peters T M, et al. Medical image computing and computer assisted intervention-MICCAI 2019. Lecture notes in computer science, 11764, 797-805(2019).

    [16] Lü X W, Shao F, Xiong Y M et al. Retinal vessel segmentation method based on two-stream networks[J]. Acta Optica Sinica, 40, 0410002(2020).

    [17] Li D, Dharmawan D A, Ng B P et al. Residual U-net for retinal vessel segmentation[C], 1425-1429(2019).

    [18] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [19] He K M, Zhang X Y, Ren S Q et al. Identity mappings in deep residual networks[M]. Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science, 9908, 630-645(2016).

    [20] Ghiasi G, Lin T Y, Le Q V. DropBlock: a regularization method for convolutional networks[EB/OL]. https://arxiv.org/abs/1810.12890

    [21] Szegedy C, Liu W, Jia Y Q et al. Going deeper with convolutions[C], 15523970(2015).

    [22] Kauderer-Abrams E. Quantifying translation-invariance in convolutional neural networks[EB/OL]. https://arxiv.org/abs/1801.01450

    [23] Aharon A, Yair W. Why do deep convolutional networks generalize so poorly to small image transformations?[EB/OL]. https://arxiv.org/abs/1805.12177

    [24] Zhang R. Making convolutional networks shift-invariant again[EB/OL]. https://arxiv.org/abs/1904.11486

    [25] Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. https://arxiv.org/abs/1511.07122

    [26] Wang Q L, Wu B G, Zhu P F et al. ECA-net: efficient channel attention for deep convolutional neural networks[C], 11531-11539(2020).

    [27] Woo S, Park J, Lee J Y et al. CBAM: convolutional block attention module[M]. Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science, 11211, 3-19(2018).

    [28] Oktay O, Schlemper J, Folgoc L L et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. https://arxiv.org/abs/1804.03999

    [29] Staal J, Abramoff M D, Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).

    [30] Fraz M M, Remagnino P, Hoppe A et al. An ensemble classification-based approach applied to retinal blood vessel segmentation[J]. IEEE Transactions on Biomedical Engineering, 59, 2538-2548(2012).

    [31] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [32] Kromm C, Rohr K. Inception capsule network for retinal blood vessel segmentation and centerline extraction[C], 1223-1226(2020).

    [33] Roychowdhury S, Koozekanani D D, Parhi K K. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification[J]. IEEE Journal of Biomedical and Health Informatics, 19, 1118-1128(2015).

    [34] Dash J, Bhoi N. An unsupervised approach for extraction of blood vessels from fundus images[J]. Journal of Digital Imaging, 31, 857-868(2018).

    [35] Mathews M R, Anzar S M, Kalesh Krishnan R et al. EfficientNet for retinal blood vessel segmentation[C], 20350335(2020).

    Feng Zhao, Beibei Zhong, Hanqiang Liu. Multi-Scale Residual U-Net Fundus Blood Vessel Segmentation Based on Attention Mechanism[J]. Laser & Optoelectronics Progress, 2022, 59(18): 1810002
    Download Citation