[1] Loss D, DiVincenzo D P. Quantum computation with quantum dots [J]. Phys. Rev. A, 1998, 57: 120.
[2] Imamoglu A, Awschalom D D, Burkard G,et al. Quantum information processing using quantum dot spins and cavity QED [J]. Phys. Rev. Lett., 1999, 83: 4204.
[3] Leuenberger M N. Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots [J]. Phys. Rev. B, 2006, 73: 075312.
[4] Zhao N, Zhong L, et al. Spin entanglement induced by spin-orbit interactions in coupled quantum dots [J]. Phys. Rev. B, 2006, 74: 075307.
[5] Emary C, Sham L J. Optically controlled logic gates for two spin qubits in vertically coupled quantum dots [J]. Phys. Rev. B, 2007, 75: 125317.
[6] Boyle S J, Ramsay A J, Bello F, et al. Two-qubit conditional quantum-logic operation in a single self-assembled quantum dot [J]. Phys. Rev. B, 2008, 78: 075301.
[7] Bertoni A, Bordone P, Brunetti R, et al. Quantum logic gates based on coherent electron transport in quantum wires [J]. Phys. Rev. Lett., 1999, 84: 5912-5915.
[8] Zhu S L, Wang Z D. Unconventional geometric quantum computation [J]. Phys. Rev. Lett., 2003, 91: 187902.
[9] Sorensen A S, Molmer K. Entangling atoms in bad cavities [J]. Phys. Rev. A, 2002, 66: 022314.
[10] Sorensen A S, Molmer K. Entanglement and quantum computation with ions in thermal motion [J]. Phys. Rev. A, 2000, 62: 022311.
[11] Feng X L, Wang Z, Wu C, et al. Scheme for unconventional geometric quantum computation in cavity QED [J]. Phys. Rev. A, 2007, 75: 052312.
[12] Clark S G, Parkins A S. Entanglement and entropy engineering of atomic two-qubit states [J]. Phys. Rev. Lett., 2003, 90: 047905.
[13] Leibfried D, DeMarco B, Meyer V, et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate [J]. Nature, 2003, 422: 412.
[14] Wang X, Zanardi P. Simulation of many-body interactions by conditional geometric phases [J]. Phys. Rev. A, 2002, 65: 032327.
[15] Zheng S B. Unconventional geometric quantum phase gates with a cavity QED system [J]. Phys. Rev. A, 2004, 70: 052320.
[16] Chen C Y, Feng M, et al. Strong-driving-assisted unconventional geometric logic gate in cavity QED [J]. Phys. Rev. A, 2006, 73: 032344.
[17] Chen C Y, Zhang X L, Deng Z J, et al. Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model [J]. Phys. Rev. A, 2006, 74, 032328.
[18] Lloyd S. Almost any quantum logic gate is universal [J]. Phys. Rev. Lett., 1995, 75: 346.
[19] Kuratsuji H. Geometric canonical phase factors and path integrals [J]. Phys. Rev. Lett., 1988, 61: 1687.
[20] Hillery M, Zubairy M S. Path-integral approach to problems in quantum optics [J]. Phys. Rev. A, 1982, 26: 451.
[21] Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution [J]. Phys. Rev. Lett., 1987, 58: 1593.
[22] Taylor J M, Lukin M D. Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip [J]. cond-mat/0605144.
[23] Majer J, Chow J M, Gambetta J M, et al. Coupling superconducting qubits via a cavity bus [J]. Nature (London), 2007, 449: 443.
[24] Childress L, Sorensen A S, Lukin M D. Mesoscopic cavity quantum electrodynamics with quantum dots [J]. Phys. Rev. A, 2004, 69: 042302.
[25] Brun T A, Wang H. Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange [J]. Phys. Rev. A, 2000, 61: 032307.
[26] Ryu H Y, Notomi M, Lee Y H. High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities [J]. Appl. Phys. Lett., 2003, 83: 4294.