• Chinese Journal of Quantum Electronics
  • Vol. 26, Issue 4, 431 (2009)
Gang ZHANG1 and Ping DONG2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    ZHANG Gang, DONG Ping. Unconventional geometric quantum computation with quantum-dot spin qubits inside a cavity[J]. Chinese Journal of Quantum Electronics, 2009, 26(4): 431 Copy Citation Text show less
    References

    [1] Loss D, DiVincenzo D P. Quantum computation with quantum dots [J]. Phys. Rev. A, 1998, 57: 120.

    [2] Imamoglu A, Awschalom D D, Burkard G,et al. Quantum information processing using quantum dot spins and cavity QED [J]. Phys. Rev. Lett., 1999, 83: 4204.

    [3] Leuenberger M N. Fault-tolerant quantum computing with coded spins using the conditional Faraday rotation in quantum dots [J]. Phys. Rev. B, 2006, 73: 075312.

    [4] Zhao N, Zhong L, et al. Spin entanglement induced by spin-orbit interactions in coupled quantum dots [J]. Phys. Rev. B, 2006, 74: 075307.

    [5] Emary C, Sham L J. Optically controlled logic gates for two spin qubits in vertically coupled quantum dots [J]. Phys. Rev. B, 2007, 75: 125317.

    [6] Boyle S J, Ramsay A J, Bello F, et al. Two-qubit conditional quantum-logic operation in a single self-assembled quantum dot [J]. Phys. Rev. B, 2008, 78: 075301.

    [7] Bertoni A, Bordone P, Brunetti R, et al. Quantum logic gates based on coherent electron transport in quantum wires [J]. Phys. Rev. Lett., 1999, 84: 5912-5915.

    [8] Zhu S L, Wang Z D. Unconventional geometric quantum computation [J]. Phys. Rev. Lett., 2003, 91: 187902.

    [9] Sorensen A S, Molmer K. Entangling atoms in bad cavities [J]. Phys. Rev. A, 2002, 66: 022314.

    [10] Sorensen A S, Molmer K. Entanglement and quantum computation with ions in thermal motion [J]. Phys. Rev. A, 2000, 62: 022311.

    [11] Feng X L, Wang Z, Wu C, et al. Scheme for unconventional geometric quantum computation in cavity QED [J]. Phys. Rev. A, 2007, 75: 052312.

    [12] Clark S G, Parkins A S. Entanglement and entropy engineering of atomic two-qubit states [J]. Phys. Rev. Lett., 2003, 90: 047905.

    [13] Leibfried D, DeMarco B, Meyer V, et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate [J]. Nature, 2003, 422: 412.

    [14] Wang X, Zanardi P. Simulation of many-body interactions by conditional geometric phases [J]. Phys. Rev. A, 2002, 65: 032327.

    [15] Zheng S B. Unconventional geometric quantum phase gates with a cavity QED system [J]. Phys. Rev. A, 2004, 70: 052320.

    [16] Chen C Y, Feng M, et al. Strong-driving-assisted unconventional geometric logic gate in cavity QED [J]. Phys. Rev. A, 2006, 73: 032344.

    [17] Chen C Y, Zhang X L, Deng Z J, et al. Influence from cavity decay on geometric quantum computation in the large-detuning cavity QED model [J]. Phys. Rev. A, 2006, 74, 032328.

    [18] Lloyd S. Almost any quantum logic gate is universal [J]. Phys. Rev. Lett., 1995, 75: 346.

    [19] Kuratsuji H. Geometric canonical phase factors and path integrals [J]. Phys. Rev. Lett., 1988, 61: 1687.

    [20] Hillery M, Zubairy M S. Path-integral approach to problems in quantum optics [J]. Phys. Rev. A, 1982, 26: 451.

    [21] Aharonov Y, Anandan J. Phase change during a cyclic quantum evolution [J]. Phys. Rev. Lett., 1987, 58: 1593.

    [22] Taylor J M, Lukin M D. Cavity quantum electrodynamics with semiconductor double-dot molecules on a chip [J]. cond-mat/0605144.

    [23] Majer J, Chow J M, Gambetta J M, et al. Coupling superconducting qubits via a cavity bus [J]. Nature (London), 2007, 449: 443.

    [24] Childress L, Sorensen A S, Lukin M D. Mesoscopic cavity quantum electrodynamics with quantum dots [J]. Phys. Rev. A, 2004, 69: 042302.

    [25] Brun T A, Wang H. Coupling nanocrystals to a high-Q silica microsphere: entanglement in quantum dots via photon exchange [J]. Phys. Rev. A, 2000, 61: 032307.

    [26] Ryu H Y, Notomi M, Lee Y H. High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities [J]. Appl. Phys. Lett., 2003, 83: 4294.

    ZHANG Gang, DONG Ping. Unconventional geometric quantum computation with quantum-dot spin qubits inside a cavity[J]. Chinese Journal of Quantum Electronics, 2009, 26(4): 431
    Download Citation