[1] Franken P A, Hill A E, Peters C W et al. Generation of second harmonic[J]. Physical Review Letters, 7, 118(1961).
[2] Yang Z, Tan W M, Zhang T J et al. MXene-based broadband ultrafast nonlinear activator for optical computing[J]. Advanced Optical Materials, 10, 2200714(2022).
[3] Coarer F D L, Sciamanna M, Katumba A et al. All-optical reservoir computing on a photonic chip using silicon-based ring resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 7600108(2018).
[4] Steinbrecher G R, Olson J P, Englund D et al. Quantum optical neural networks[J]. NPJ Quantum Information, 5, 60(2019).
[5] Feldmann J, Youngblood N, Wright C D et al. All-optical spiking neurosynaptic networks with self-learning capabilities[J]. Nature, 569, 208-214(2019).
[6] Zuo Y, Li B H, Zhao Y J et al. All-optical neural network with nonlinear activation functions[J]. Optica, 6, 1132-1137(2019).
[7] Williamson I A D, Hughes T W, Minkov M et al. Reprogrammable electro-optic nonlinear activation functions for optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7700412(2020).
[8] Jha A, Huang C R, Prucnal P R. Reconfigurable all-optical nonlinear activation functions for neuromorphic photonics[J]. Optics Letters, 45, 4819-4822(2020).
[9] George J K, Mehrabian A, Amin R et al. Neuromorphic photonics with electro-absorption modulators[J]. Optics Express, 27, 5181-5191(2019).
[10] Amin R, George J K, Sun S et al. ITO-based electro-absorption modulator for photonic neural activation function[J]. APL Materials, 7, 081112(2019).
[11] Williamson I A D, Hughes T W, Minkov M et al. Tunable nonlinear activation functions for optical neural networks[C], SM1E.2(2020).
[12] Tait A N, de Lima T F, Nahmias M A et al. Silicon photonic modulator neuron[J]. Physical Review Applied, 11, 064043(2019).
[14] Perry J W, Alvarez D, Choong I et al. Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phthalocyanines[J]. Optics Letters, 19, 625-627(1994).
[15] Dejonckheere A, Duport F, Smerieri A et al. All-optical reservoir computer based on saturation of absorption[J]. Optics Express, 22, 10868-10881(2014).
[16] Gao Y C, Zhang X R, Li Y L et al. Saturable absorption and reverse saturable absorption in platinum nanoparticles[J]. Optics Communications, 251, 429-433(2005).
[17] Li C F, Wang Y X, Guo F Y et al. Kinetics of reverse saturation absorption in C60 medium[J]. Acta Physica Sinica, 42, 1236-1244(1993).
[18] Wu J M, Lin X, Guo Y C et al. Analog optical computing for artificial intelligence[J]. Engineering, 10, 133-145(2022).
[19] Chen B, Zhang Z Y, Dai T G et al. Photonic neural networks and its applications[J]. Laser & Optoelectronics Progress, 60, 0600001(2023).
[20] Bramerie L, Le Q T, Gay M et al. All-optical 2R regeneration with a vertical microcavity-based saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 870-883(2012).
[21] Massoubre D, Oudar J L, Dion J et al. Scaling of the saturation energy in microcavity saturable absorber devices[J]. Applied Physics Letters, 88, 153513(2006).
[22] Massoubre D, Oudar J L, Fatome J et al. All-optical extinction-ratio enhancement of a 160 GHz pulse train by a saturable-absorber vertical microcavity[J]. Optics Letters, 31, 537-539(2006).
[23] Paquot Y, Duport F, Smerieri A et al. Optoelectronic Reservoir computing[J]. Scientific Reports, 2, 287(2012).
[24] Su W J, Cooper T M, Brant M C. Investigation of reverse-saturable absorption in brominated porphyrins[J]. Chemistry of Materials, 10, 1212-1213(1998).
[25] Larger L, Soriano M C, Brunner D et al. Photonic information processing beyond turing: an optoelectronic implementation of reservoir computing[J]. Optics Express, 20, 3241-3249(2012).
[26] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media[J]. Reviews of Modern Physics, 77, 633-673(2005).
[27] Boller K J, Imamoğlu A, Harris S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593-2596(1991).
[28] Leng H X, Szychowski B, Daniel M C et al. Dramatic modification of coupled-plasmon resonances following exposure to electron beams[J]. The Journal of Physical Chemistry Letters, 8, 3607-3612(2017).
[29] Ríos C, Stegmaier M, Hosseini P et al. Integrated all-photonic non-volatile multi-level memory[J]. Nature Photonics, 9, 725-732(2015).
[30] Cheng Z G, Ríos C, Pernice W H P et al. On-chip photonic synapse[J]. Science Advances, 3, e1700160(2017).
[31] Amiri I S, Rashed A N Z, Mohamed A E N A et al. Nonlinear effects with semiconductor optical amplifiers[J]. Journal of Optical Communications, 44, 11-17(2023).
[32] Singh V K, Singh Yadav A K, Kumar A et al. Semiconductor-optical-amplifier Mach-Zehnder interferometer based optical networks[J]. Telkomnika Indonesian Journal of Electrical Engineering, 11, 525-528(2013).
[33] Shi B, Calabretta N, Stabile R. Deep neural network through an InP SOA-based photonic integrated cross-connect[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701111(2019).
[34] Fan H L, Wu C M, Dutta N K et al. Cross gain modulation in semiconductor optical amplifier[J]. Proceedings of SPIE, 3625, 250-256(1999).
[35] Wei J L, Hamie A, Giddings R P et al. Semiconductor optical amplifier-enabled intensity modulation of adaptively modulated optical OFDM signals in SMF-based IMDD systems[J]. Journal of Lightwave Technology, 27, 3678-3688(2009).
[36] Mourgias-Alexandris G, Tsakyridis A, Passalis N et al. An all-optical neuron with sigmoid activation function[J]. Optics Express, 27, 9620-9623(2019).
[37] Leuthold J, Koos C, Freude W. Nonlinear silicon photonics[J]. Nature Photonics, 4, 535-544(2010).
[38] Huang C R, Jha A, de Lima T F et al. On-chip programmable nonlinear optical signal processor and its applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 27, 6100211(2021).
[39] Jha A, Huang C R, Peng H T et al. Photonic spiking neural networks and graphene-on-silicon spiking neurons[J]. Journal of Lightwave Technology, 40, 2901-2914(2022).
[40] Wu B, Li H K, Tong W Y et al. Low-threshold all-optical nonlinear activation function based on a Ge/Si hybrid structure in a microring resonator[J]. Optical Materials Express, 12, 970-980(2022).
[41] Yu W Z, Zheng S A, Zhao Z Y et al. Reconfigurable low-threshold all-optical nonlinear activation functions based on an add-drop silicon microring resonator[J]. IEEE Photonics Journal, 14, 5559807(2022).
[42] Jha A, Huang C R, Prucnal P R. Programmable, high-speed all-optical nonlinear activation functions for neuromorphic photonics[C], Tu5H.3(2021).
[43] Wan X, Qi M Q, Chen T Y et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific Reports, 6, 20663(2016).
[44] Leykam D, Mittal S, Hafezi M et al. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices[J]. Physical Review Letters, 121, 023901(2018).
[45] Campo J R R, Pérez-López D. Reconfigurable activation functions in integrated optical neural networks[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8300513(2022).
[46] Miscuglio M, Adam G C, Kuzum D et al. Roadmap on material-function mapping for photonic-electronic hybrid neural networks[J]. APL Materials, 7, 100903(2019).
[47] Miscuglio M, Mehrabian A, Hu Z B et al. All-optical nonlinear activation function for photonic neural networks[J]. Optical Materials Express, 8, 3851(2018).