• Laser & Optoelectronics Progress
  • Vol. 53, Issue 9, 90003 (2016)
Yang Jing*, Feng Qibo, and Li Jiakun
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop53.090003 Cite this Article Set citation alerts
    Yang Jing, Feng Qibo, Li Jiakun. Review on Multi-Degree-of-Freedom Motion Error Measurement Methods for Rotary-Axis Laser[J]. Laser & Optoelectronics Progress, 2016, 53(9): 90003 Copy Citation Text show less
    References

    [1] Hong C, Ibaraki S, Matsubara A. Influence of position-dependent geometric errors of rotary axes on a machining test of cone frustum by five-axis machine tools[J]. Precision Engineering, 2011, 35(1): 1-11.

    [2] Melichar M, Kutlwaer J. The issue of contactless setup before measuring process[J]. Procedia Engineering, 2014, 69: 1088-1093.

    [3] Yang Z H, Hong J, Zhang J H, et al. Research on the rotational accuracy measurement of an aerostatic spindle in a rolling bearing performance analysis instrument[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(7): 1293-1302.

    [4] Lawson N A. Control system for an articulated manipulator arm: US910205211[P]. 2015-08-11.

    [5] Ohnishi Y, Ekuni S, Kondo M. Radar antenna device and method for controlling electric power source thereof: US14-513946[P]. 2014-10-14.

    [6] Doleschel A, Lege M. Contactless solutions for radar rotary joint systems[C]. 16th International Radar Symposium, 2015: 451-456.

    [7] Das J, Venkateswaran P. Design and development of multiple antenna based system for RADAR applications[C]. IEEE MTT-S International Microwave and RF Conference, 2015: 143-146.

    [8] Li Danni, Hu Dan, Wang Jinsong, et al. Application of three-dimensional laser radar to the measurement of deviation angle of guns[J]. Chinese J Lasers, 2014, 41(10): 1014004.

    [9] Luo Yuan, He Yan, Hu Shanjiang, et al. Three-dimensional video imaging lidar system based on acousto-optic laser[J]. Chinese J Lasers, 2014, 41(8): 0802005.

    [10] Holler M, Raabe J .Error motion compensating tracking interferometer for the position measurement of objects with rotational degree of freedom[J]. Optical Engineering, 2015, 54(5): 054101.

    [11] Khan A W, Chen W Y. A methodology for systematic geometric error compensation in five-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(5-8): 615-628.

    [12] Zhu S W, Ding G F, Qin S F, et al. Integrated geometric error modeling, identification and compensation of CNC machine tools[J]. International Journal of Machine Tools and Manufacture, 2012, 52(1): 24-29.

    [13] Nojedeh M V, Habibi M, Arezoo B. Tool path accuracy enhancement through geometrical error compensation[J]. International Journal of Machine Tools and Manufacture, 2011, 51(6): 471-482.

    [14] Test code for machine tools. Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions: ISO230-1[S]. Switzerland: Copyright International Organization, 2012.

    [15] Linares J M, Chaves-Jacob J, Schwenke H, et al. Impact of measurement procedure when error mapping and compensating a small CNC machine using a multilateration laser interferometer[J]. Precision Engineering, 2014, 38(3): 578-588.

    [16] Lee C B, Lee S K. Multi-degree-of-freedom motion error measurement in an ultraprecision machine using laser encoder - review[J]. Journal of Mechanical Science and Technology, 2013, 27(1): 141-152.

    [17] Ibaraki S, Knapp W. Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools[J]. International Journal of Automation Technology, 2012, 6(2): 110-124.

    [18] Suh S H, Lee E S, Jung S Y. Error modelling and measurement for the rotary table of five-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 1998, 14(9): 656-663.

    [19] Chaney R J. Method and apparatus for measurement of angular displacement: US5237390[P]. 1993-08-17.

    [20] Dowdy C R, Courville C J. Apparatus and method for making rotary calibrations of a machine tool table: US5508806[P]. 1996-04-16.

    [21] Ohsawa N. Precision indexing angle measuring method and system for machine tools: US5969817[P]. 1999-10-19.

    [22] Wang S F, Chiu M H, Lai C W, et al. High-sensitivity small-angle sensor based on surface plasmon resonance technology and heterodyne interferometry[J]. Applied Optics, 2006, 45(26): 6702-6707.

    [23] Lin S T, Syu W J. Heterodyne angular interferometer using a square prism[J]. Optics and Lasers in Engineering, 2009, 47(1): 80-83.

    [24] Hsieh H L, Lee J Y, Chen L Y, et al. Development of an angular displacement measurement technique through birefringence heterodyne interferometry[J]. Optics Express, 2016, 24(7): 6802-6813.

    [25] Guo Yang, Zhong Jingang. Focused laser self-mixing interference caused by rotatable reflector[J]. Chinese J Lasers, 2015, 42(3): 0308003.

    [26] Liu C H, Jywe W Y, Shyu L H, et al. Application of a diffraction grating and position sensitive detectors to the measurement of error motion and angular indexing of an indexing table[J]. Precision Engineering, 2005, 29(4): 440-448.

    [27] Chen C J, Lin P D, Jywe W Y. An optoelectronic measurement system for measuring 6-degree-of-freedom motion error of rotary parts[J]. Optics Express, 2007, 15(22): 14601-14617.

    [28] Park S R, Hoang T K, Yang S H. A new optical measurement system for determining the geometrical errors of rotary axis of a 5-axis miniaturized machine tool[J]. Journal of Mechanical Science and Technology, 2010, 24(1): 175-179.

    [29] JENAer Meβtechnik Company. Dual-frequency laser interferometer: ZLM 700 & ZLM 800-manual on the basic equipment for the measurement of translatory and rotatory quantities[Z]. 2003.

    [30] Yang Tao. Design and implementation of simultaneous measurement system of large range displacement and angle based on laser[D]. Hangzhou: Zhejiang Sci-Tech University, 2015: 14-21.

    [31] He Z Y, Fu J Z, Zhang L C, et al. A new error measurement method to identify all six error parameters of a rotational axis of a machine tool[J]. International Journal of Machine Tools and Manufacture, 2015, 88: 1-8.

    [32] Kim J A, Kim K C, Bae E W, et al. Six-degree-of-freedom displacement measurement system using a diffraction grating[J]. Review of Scientific Instruments, 2000, 71(8): 3214-3219.

    [33] Liu C H, Jywe W Y, Tzeng S C. Simple three-dimensional laser angle sensor for three-dimensional small-angle measurement[J]. Applied Optics, 2004, 43(14): 2840-2845.

    [34] Jywe W, Chen C J, Hsieh W H, et al. A novel simple and low cost 4 degree of freedom angular indexing calibrating technique for a precision rotary table[J]. International Journal of Machine Tools and Manufacture, 2007, 47(12): 1978-1987.

    [35] Schwenke H, Schmitt R, Jatzkowski P, et al. On-the-fly calibration of linear and rotary axes of machine tools and CMMs using a tracking interferometer[J]. CIRP Annals - Manufacturing Technology, 2009, 58(1): 477-480.

    [36] Aguado S, Samper D, Santolaria J, et al. Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 160-169.

    [37] Pan F Y, Li M, Yin J. Error model and accuracy calibration of 5-axis machine tool[J]. Telkomnika Indonesian Journal of Electrical Engineering, 2013, 11(8): 4251-4259.

    [38] Zhong G Y, Wang C Q, Yang S F, et al. Position geometric error modeling, identification and compensation for large 5-axis machining center prototype[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 142-150.

    [39] Aguado S, Santolaria J, Samper D, et al. Influence of measurement noise and laser arrangement on measurement uncertainty of laser tracker multilateration in machine tool volumetric verification[J]. Precision Engineering, 2013, 37(4): 929-943.

    [40] Aguado S, Santolaria J, Samper D, et al. Study of self-calibration and multilateration in machine tool volumetric verification for laser tracker error reduction[J]. Proceedings of the Institution of Mechanical Engineers, 2014, 228(7): 659-672.

    [41] Zhang Z J, Ren M J, Liu M J. A modified sequential multilateration scheme and its application in geometric error measurement of rotary axis[J]. Procedia CIRP, 2015, 27: 313-317.

    [42] Zhang Z J, Hu H. Three-point method for measuring the geometric error components of linear and rotary axes based on sequential multilateration[J]. Journal of Mechanical Science and Technology, 2013, 27(9): 2801-2811.

    [43] Wang Jindong, Guo Junjie, Fei Zhigen, et al. Method of geometric error identification for numerical control machine tool based on laser tracker[J]. Journal of Mechanical Engineering, 2011, 47(14): 13-19.

    [44] Santolaria J, Majarena A C, Samper D, et al. Articulated arm coordinate measuring machine calibration by laser tracker multilateration[J]. The Scientific World Journal, 2014, 2014: 681853.

    [45] Bryan J B. A simple method for testing measuring machines and machine tools. Part 1: Principles and applications[J]. Precision Engineering, 1982, 4(2): 61-69.

    [46] Zargarbashi S H H, Mayer J R R. Assessment of machine tool trunnion axis motion error, using magnetic double ball bar[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14): 1823-1834.

    [47] Khan A W, Chen W. A methodology for error characterization and quantification in rotary joints of multi-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2010, 51(9-12): 1009-1022.

    [48] Lee D M, Zhu Z K, Lee K I, et al. Identification and measurement of geometric errors for a five-axis machine tool with a tilting head using a double ball-bar[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(2): 337-343.

    [49] Chen J X, Lin S W, He B W. Geometric error measurement and identification for rotary table of multi-axis machine tool using double ballbar[J]. International Journal of Machine Tools and Manufacture, 2014, 77: 47-55.

    [50] Xiang S, Yang J, Zhang Y. Using a double ball bar to identify position-independent geometric errors on the rotary axes of five-axis machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(9): 2071-2082.

    [51] Chen D J, Dong L H, Bian Y H, et al. Prediction and identification of rotary axes error of non-orthogonal five-axis machine tool[J]. International Journal of Machine Tools and Manufacture, 2015, 94: 74-87.

    [52] Fu G Q, Fu J Z, Xu Y T, et al. Accuracy enhancement of five-axis machine tool based on differential motion matrix: Geometric error modeling, identification and compensation[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 170-181.

    [53] Bi Q Z, Huang N D, Sun C, et al. Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 182-191.

    [54] Weikert S. R-test, a new device for accuracy measurements on five axis machine tools[J]. CIRP Annals - Manufacturing Technology, 2004, 53(1): 429-432.

    [55] Ibaraki S, Oyama C, Otsubo H. Construction of an error map of rotary axes on a five-axis machining center by static R-test[J]. International Journal of Machine Tools and Manufacture, 2011, 51(3): 190-200.

    [56] Florussen G H J, Spaan H A M. Dynamic R-test for rotary tables on 5-axes machine tools[J]. Procedia CIRP, 2012, 1: 536-539.

    [57] Alessandro V, Gianni C, Antonio S. Axis geometrical errors analysis through a performance test to evaluate kinematic error in a five axis tilting-rotary table machine tool[J]. Precision Engineering, 2015, 39: 224-233.

    [58] Ibaraki S, Sawada M, Matsubara A, et al. Machining tests to identify kinematic errors on five-axis machine tools[J]. Precision Engineering, 2010, 34(3): 387-398.

    Yang Jing, Feng Qibo, Li Jiakun. Review on Multi-Degree-of-Freedom Motion Error Measurement Methods for Rotary-Axis Laser[J]. Laser & Optoelectronics Progress, 2016, 53(9): 90003
    Download Citation