• Laser & Optoelectronics Progress
  • Vol. 56, Issue 5, 053101 (2019)
Mengying Liu and Ying Zhong*
Author Affiliations
  • Sate Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP56.053101 Cite this Article Set citation alerts
    Mengying Liu, Ying Zhong. Control of Spontaneous Emission in Metal Nanoparticle Gap on Metal Substrate[J]. Laser & Optoelectronics Progress, 2019, 56(5): 053101 Copy Citation Text show less
    References

    [1] Akselrod G M, Argyropoulos C, Hoang T B et al. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J]. Nature Photonics, 8, 835-840(2014). http://www.nature.com/nphoton/journal/v8/n11/nphoton.2014.228/metrics

    [2] Russell K J, Liu T L, Cui S Y et al. Large spontaneous emission enhancement in plasmonic nanocavities[J]. Nature Photonics, 6, 459-462(2012). http://www.nature.com/nphoton/journal/v6/n7/abs/nphoton.2012.112.html

    [3] Hoang T B, Akselrod G M, Argyropoulos C et al. Ultrafast spontaneous emission source using plasmonic nanoantennas[J]. Nature Communications, 6, 7788(2015). http://links.ealert.nature.com/ctt?kn=13&ms=NDkyMDA5MzkS1&r=ODkwMTM2NjQyNgS2&b=0&j=NzIzODA0Njg2S0&mt=1&rt=0

    [4] Wan J N, Lin Y, Zhong Y et al. Effect of gold nanoparticles on fluorescence spontaneous emission of quantum dots[J]. Laser & Optoelectronics Progress, 55, 071601(2018).

    [5] Yuan C T, Wang Y C, Cheng H W et al. Modification of fluorescence properties in single colloidal quantum dots by coupling to plasmonic gap modes[J]. The Journal of Physical Chemistry C, 117, 12762-12768(2013). http://pubs.acs.org/doi/abs/10.1021/jp401993r

    [6] Rose A, Hoang T B. McGuire F, et al. Control of radiative processes using tunable plasmonic nanopatch antennas[J]. Nano Letters, 14, 4797-4802(2014). http://europepmc.org/abstract/MED/25020029

    [7] Lin Y, Zhong Y, Liu H T. Modification of single photon fluorescence emission of single quantum dots with different substrates[J]. Chinese Journal of Lasers, 45, 0606005(2018).

    [8] Cheng C, Li J J. Experimental measurement and determination of photoluminescence lifetime of PbS quantum dots[J]. Acta Optica Sinica, 37, 0130001(2017).

    [9] Lumdee C, Yun B F, Kik P G. Gap-plasmon enhanced gold nanoparticle photoluminescence[J]. ACS Photonics, 1, 1224-1230(2014). http://pubs.acs.org/doi/pdf/10.1021/ph500304v

    [10] Belacel C, Habert B, Bigourdan F et al. Controlling spontaneous emission with plasmonic optical patch antennas[J]. Nano Letters, 13, 1516-1521(2013). http://pubs.acs.org/doi/abs/10.1021/nl3046602

    [11] Akimov A V, Mukherjee A, Yu C L et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots[J]. Nature, 450, 402-406(2007). http://www.ncbi.nlm.nih.gov/pubmed/18004381

    [12] Yi M F, Zhang D G, Wang P et al. Plasmonic interaction between silver nano-cubes and a silver ground plane studied by surface-enhanced raman scattering[J]. Plasmonics, 6, 515-519(2011). http://link.springer.com/article/10.1007/s11468-011-9230-7

    [13] Ciraci C, Hill R T, Mock J J et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 337, 1072-1074(2012). http://www.ncbi.nlm.nih.gov/pubmed/22936772

    [14] Enderlein J, Ruckstuhl T, Seeger S. Highly efficient optical detection of surface-generated fluorescence[J]. Applied Optics, 38, 724-732(1999). http://www.ncbi.nlm.nih.gov/pubmed/18305670

    [15] Bakker R M, Drachev V P, Liu Z T et al. Nanoantenna array-induced fluorescence enhancement and reduced lifetimes[J]. New Journal of Physics, 10, 125022(2008). http://www.iop.org/EJ/abstract/1367-2630/10/12/125022/

    [16] Lim D K, Jeon K S, Kim H M et al. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection[J]. Nature Materials, 9, 60-67(2010). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000021000001000002000001&idtype=cvips&gifs=Yes

    [17] Coenen T, Bernal Arango F, Femius Koenderink A et al. Directional emission from a single plasmonic scatterer[J]. Nature Communications, 5, 3250(2014). http://europepmc.org/abstract/med/24488237

    [18] Kosako T, Kadoya Y, Hofmann H F. Directional control of light by a nano-optical Yagi-Uda antenna[J]. Nature Photonics, 4, 312-315(2010).

    [19] Dorfmüller J, Dregely D, Esslinger M et al. Near-field dynamics of optical Yagi-Uda nanoantennas[J]. Nano Letters, 11, 2819-2824(2011). http://europepmc.org/abstract/med/21619018

    [20] Aouani H, Mahboub O, Bonod N et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations[J]. Nano Letters, 11, 637-644(2011). http://pubs.acs.org/doi/abs/10.1021/nl103738d

    [21] Sun Y Z, Feng L S, Bachelot R et al. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas[J]. Optics Express, 25, 17417-17430(2017). http://www.onacademic.com/detail/journal_1000040493414610_e387.html

    [22] Tanaka Y Y, Shimura T. Tridirectional polarization routing of light by a single triangular plasmonic nanoparticle[J]. Nano Letters, 17, 3165-3170(2017). http://europepmc.org/abstract/MED/28388075

    [23] Le Moal E, Marguet S, Rogez B et al. An electrically excited nanoscale light source with active angular control of the emitted light[J]. Nano Letters, 13, 4198-4205(2013). http://europepmc.org/abstract/med/23927672

    [24] Liu W, Miroshnichenko A E, Neshev D N et al. Broadband unidirectional scattering by magneto-electric core-shell nanoparticles[J]. ACS Nano, 6, 5489-5497(2012). http://pubs.acs.org/doi/abs/10.1021/nn301398a

    [25] King N S, Li Y, Ayala-Orozco C et al. Angle-and spectral-dependent light scattering from plasmonic nanocups[J]. ACS Nano, 5, 7254-7262(2011). http://www.ncbi.nlm.nih.gov/pubmed/21761840

    [26] Vercruysse D, Sonnefraud Y, Verellen N et al. Unidirectional side scattering of light by a single-element nanoantenna[J]. Nano Letters, 13, 3843-3849(2013). http://europepmc.org/abstract/med/23898977

    [27] Vercruysse D, Zheng X Z, Sonnefraud Y et al. Directional fluorescence emission by individual V-antennas explained by mode expansion[J]. ACS Nano, 8, 8232-8241(2014). http://europepmc.org/abstract/MED/25033422

    [28] Wang B, Jin J, Hou Z Y. Far-field characteristics of double butterfly-shape nano-metallic optical antenna[J]. Laser & Optoelectronics Progress, 52, 021601(2015).

    [29] Lü G W, Wang Y W, Chou R Y et al. Directional side scattering of light by a single plasmonic trimer[J]. Laser & Photonics Reviews, 9, 530-537(2015). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201500089/pdf

    [30] Shen H M, Lu G W, He Y B et al. Directional and enhanced spontaneous emission with a corrugated metal probe[J]. Nanoscale, 6, 7512-7518(2014). http://europepmc.org/abstract/med/24887425

    [31] Yang J J, Hugonin J P, Lalanne P. Near-to-far field transformations for radiative and guided waves[J]. ACS Photonics, 3, 395-402(2016). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00559

    [32] Palik E D[M]. Handbook of optical constants of solids II(1985).

    [33] Jia H W, Liu H T, Zhong Y. Role of surface plasmon polaritons and other waves in the radiation of resonant optical dipole antennas[J]. Scientific Reports, 5, 8456(2015).

    Mengying Liu, Ying Zhong. Control of Spontaneous Emission in Metal Nanoparticle Gap on Metal Substrate[J]. Laser & Optoelectronics Progress, 2019, 56(5): 053101
    Download Citation