• High Power Laser Science and Engineering
  • Vol. 12, Issue 2, 02000e17 (2024)
A. Corvino1、4, M. Reimold1、2、5, E. Beyreuther1、3, F.-E. Brack1, F. Kroll1, J. Pawelke1、3, J. D. Schilz1, M. Schneider1、2、3, U. Schramm1、2, M. E. P. Umlandt1、2, K. Zeil1, T. Ziegler1、2, and J. Metzkes-Ng1、*
Author Affiliations
  • 1Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
  • 2Technische Universität Dresden, Dresden, Germany
  • 3OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden – Rossendorf, Dresden, Germany
  • 4Current affiliation: Institut Curie, Université PSL, CNRS UMR3347, Orsay, France
  • 5Current affiliation: Universitätsklinikum Freiburg, Freiburg, Germany
  • show less
    DOI: 10.1017/hpl.2024.1 Cite this Article Set citation alerts
    A. Corvino, M. Reimold, E. Beyreuther, F.-E. Brack, F. Kroll, J. Pawelke, J. D. Schilz, M. Schneider, U. Schramm, M. E. P. Umlandt, K. Zeil, T. Ziegler, J. Metzkes-Ng. miniSCIDOM: a scintillator-based tomograph for volumetric dose reconstruction of single laser-driven proton bunches[J]. High Power Laser Science and Engineering, 2024, 12(2): 02000e17 Copy Citation Text show less

    Abstract

    Laser plasma accelerators (LPAs) enable the generation of intense and short proton bunches on a micrometre scale, thus offering new experimental capabilities to research fields such as ultra-high dose rate radiobiology or material analysis. Being spectrally broadband, laser-accelerated proton bunches allow for tailored volumetric dose deposition in a sample via single bunches to excite or probe specific sample properties. The rising number of such experiments indicates a need for diagnostics providing spatially resolved characterization of dose distributions with volumes of approximately 1 cm ${}^3$ for single proton bunches to allow for fast online feedback. Here we present the scintillator-based miniSCIDOM detector for online single-bunch tomographic reconstruction of dose distributions in volumes of up to approximately 1 cm ${}^3$ . The detector achieves a spatial resolution below 500 $\unicode{x3bc}$ m and a sensitivity of 100 mGy. The detector performance is tested at a proton therapy cyclotron and an LPA proton source. The experiments’ primary focus is the characterization of the scintillator’s ionization quenching behaviour.
    $$\begin{align}\mathrm{d}L/\mathrm{d}x=\frac{S\cdot \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)}{1+ kB\cdot \left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)},\end{align}$$ ((1))

    View in Article

    $$\begin{align}d=\frac{1}{\sqrt{I\cdot {t}_{\mathrm{resp}}}},\end{align}$$ ((2))

    View in Article

    $$\begin{align}{E}_{\mathrm{trans},{\max}}=\frac{2{m}_{\mathrm{e}}{c}^2\beta }{1-{\beta}^2},\end{align}$$ ((3))

    View in Article

    A. Corvino, M. Reimold, E. Beyreuther, F.-E. Brack, F. Kroll, J. Pawelke, J. D. Schilz, M. Schneider, U. Schramm, M. E. P. Umlandt, K. Zeil, T. Ziegler, J. Metzkes-Ng. miniSCIDOM: a scintillator-based tomograph for volumetric dose reconstruction of single laser-driven proton bunches[J]. High Power Laser Science and Engineering, 2024, 12(2): 02000e17
    Download Citation