• Opto-Electronic Engineering
  • Vol. 51, Issue 6, 240072-1 (2024)
Dongdong Zhao, Liang Lai, Peng Chen*, Hongchao Zhou..., Yiran Li and Ronghua Liang|Show fewer author(s)
Author Affiliations
  • College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
  • show less
    DOI: 10.12086/oee.2024.240072 Cite this Article
    Dongdong Zhao, Liang Lai, Peng Chen, Hongchao Zhou, Yiran Li, Ronghua Liang. Design and implementation of edge-based human action recognition algorithm based on ascend processor[J]. Opto-Electronic Engineering, 2024, 51(6): 240072-1 Copy Citation Text show less
    References

    [1] Y D Li, X P Xu. Human action recognition by decision-making level fusion based on spatial-temporal features. Acta Opt Sin, 38, 0810001(2018).

    [2] Z H Sun, Q H Ke, H Rahmani et al. Human action recognition from various data modalities: a review. IEEE Trans Pattern Anal Mach Intell, 45, 3200-3225(2023).

    [3] C Chen, K Liu, N Kehtarnavaz. Real-time human action recognition based on depth motion maps. J Real-Time Image Process, 12, 155-163(2016).

    [4] C K Li, Y H Hou, P C Wang et al. Joint distance maps based action recognition with convolutional neural networks. IEEE Signal Process Lett, 24, 624-628(2017).

    [5] S S Kumar, M John. Human activity recognition using optical flow based feature set, 1-5(2016). https://doi.org/10.1109/CCST.2016.7815694

    [6] J X Leng, M P Tan, B Hu et al. Video anomaly detection based on implicit view transformation. Comput Sci, 49, 142-148(2022).

    [7] G Y Li, C G Li, W J Wang et al. Research on multi-feature human pose model recognition based on one-shot learning. Opto-Electron Eng, 48, 200099(2021).

    [8] H B Wu, X Ma, Y B Li. Spatiotemporal multimodal learning with 3D CNNs for video action recognition. IEEE Trans Circuits Syst Video Technol, 32, 1250-1261(2022).

    [9] Z Y Liu, H W Zhang, Z H Chen et al. Disentangling and unifying graph convolutions for skeleton-based action recognition, 140-149(2020). https://doi.org/10.1109/CVPR42600.2020.00022

    [10] K Cheng, Y F Zhang, X Y He et al. Skeleton-based action recognition with shift graph convolutional network, 180-189(2020). https://doi.org/10.1109/CVPR42600.2020.00026

    [11] Y Xie, R L Yang, G X Liu et al. Human skeleton action recognition algorithm based on dynamic topological graph. Comput Sci, 49, 62-68(2022).

    [12] B L Liu, S Zhou, J F Dong et al. Research progress in skeleton-based human action recognition. J Comput-Aided Des Comput Graphics, 35, 1299-1322(2023).

    [13] H Law, J Deng. CornerNet: detecting objects as paired keypoints, 765-781(2018). https://doi.org/10.1007/978-3-030-01264-9_45

    [14] K W Duan, S Bai, L X Xie et al. CenterNet: keypoint triplets for object detection, 6568-6577(2019). https://doi.org/10.1109/ICCV.2019.00667

    [15] C C Zhu, Y H He, M Savvides. Feature selective anchor-free module for single-shot object detection, 840-849(2019). https://doi.org/10.1109/CVPR.2019.00093

    [16] C C Zhu, F Y Chen, Z Q Shen et al. Soft anchor-point object detection, 91-107(2020). https://doi.org/10.1007/978-3-030-58545-7_6

    [17] L Ma, Y T Gou, T Lei et al. Small object detection based on multi-scale feature fusion using remote sensing images. Opto-Electron Eng, 49, 210363(2022).

    [18] R Girshick, J Donahue, T Darrell et al. Rich feature hierarchies for accurate object detection and semantic segmentation, 580-587(2014). https://doi.org/10.1109/CVPR.2014.81

    [19] R Girshick. Fast R-CNN, 1440-1448(2015). https://doi.org/10.1109/ICCV.2015.169

    [20] H Peng, W Q Wang, L Chen et al. Few-shot object detection via online inferential calibration. Opto-Electron Eng, 50, 220180(2023).

    [21] W Liu, D Anguelov, D Erhan et al. SSD: single shot MultiBox detector, 21-37(2016). https://doi.org/10.1007/978-3-319-46448-0_2

    [22] T Y Lin, P Goyal, R Girshick et al. Focal loss for dense object detection, 2999-3007(2017). https://doi.org/10.1109/ICCV.2017.324

    [23] X Chen, D L Peng, Y Gu. Real-time object detection for UAV images based on improved YOLOv5s. Opto-Electron Eng, 49, 210372(2022).

    [24] D D Zhao, D H Xie, P Chen et al. Lightweight YOLOv5 sonar image object detection algorithm and implementation based on ZYNQ. Opto-Electron Eng, 51, 230284(2024).

    [25] H S Fang, S Q Xie, Y W Tai et al. RMPE: regional multi-person pose estimation, 2353-2362(2017). https://doi.org/10.1109/ICCV.2017.256

    [26] B Debnath, M O’Brien, M Yamaguchi et al. Adapting MobileNets for mobile based upper body pose estimation, 1-6(2018). https://doi.org/10.1109/AVSS.2018.8639378

    [27] S Qiao, Y L Wang, J Li. Real-time human gesture grading based on OpenPose, 1-6(2017). https://doi.org/10.1109/CISP-BMEI.2017.8301910

    [28] T N Kipf, M Welling. Semi-supervised classification with graph convolutional networks(2017).

    [29] L Zhao, Y J Song, C Zhang et al. T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst, 21, 3848-3858(2020).

    [30] J Klaus, M Blacher, J Giesen. Compiling tensor expressions into einsum, 129-136(2023). https://doi.org/10.1007/978-3-031-36021-3_10

    [31] D D Zhao, H C Zhou, P Chen et al. Design of forward-looking sonar system for real-time image segmentation with light multiscale attention net. IEEE Trans Instrum Meas, 73, 4501217(2024).

    [32] Y C He, Y G Zhan, G Q Xu et al. Progress in the application of OpenPose technology for human pose estimation in rehabilitation. Chin J Rehabil, 38, 437-441(2023).

    [33] Y M Qi, S Y Chen, L Sun. Two-stream CNN fall detection based on improved ViBe algorithm. Comput Eng Des, 44, 1812-1819(2023).

    [34] S J Yan, Y J Xiong, D H Lin. Spatial temporal graph convolutional networks for skeleton-based action recognition, 912(2018).

    [35] M S Li, S H Chen, X Chen et al. Actional-structural graph convolutional networks for skeleton-based action recognition, 3590-3598(2019). https://doi.org/10.1109/CVPR.2019.00371

    [36] C Plizzari, M Cannici, M Matteucci. Skeleton-based action recognition via spatial and temporal transformer networks. Comput Vision Image Underst, 208–209, 103219(2021). https://doi.org/10.1016/j.cviu.2021.103219

    [37] H D Duan, Y Zhao, K Chen et al. Revisiting skeleton-based action recognition, 2959-2968(2022). https://doi.org/10.1109/CVPR52688.2022.00298

    Dongdong Zhao, Liang Lai, Peng Chen, Hongchao Zhou, Yiran Li, Ronghua Liang. Design and implementation of edge-based human action recognition algorithm based on ascend processor[J]. Opto-Electronic Engineering, 2024, 51(6): 240072-1
    Download Citation