• Photonics Research
  • Vol. 12, Issue 3, 514 (2024)
Chenglong Zheng1, Hui Li2, Jingyu Liu3, Mengguang Wang4, Huaping Zang1、5、*, Yan Zhang3、6、*, and Jianquan Yao2
Author Affiliations
  • 1Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
  • 2Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • 3Beijing Key Laboratory for Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, and Beijing Advanced Innovation Center for Imaging Technology, Department of Physics, Capital Normal University, Beijing 100048, China
  • 4State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • 5e-mail: zanghuaping@zzu.edu.cn
  • 6e-mail: yzhang@mail.cnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.512204 Cite this Article Set citation alerts
    Chenglong Zheng, Hui Li, Jingyu Liu, Mengguang Wang, Huaping Zang, Yan Zhang, Jianquan Yao. Full-Stokes metasurface polarimetry requiring only a single measurement[J]. Photonics Research, 2024, 12(3): 514 Copy Citation Text show less
    References

    [1] N. Yu, P. Genevet, M. A. Kats. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [2] M. Liu, W. Zhu, P. Huo. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl., 10, 107(2021).

    [3] H. Xu, L. Han, Y. Li. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control. ACS Photon., 6, 211-220(2019).

    [4] G. Zheng, H. Mühlenbernd, M. Kenney. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [5] P. Georgi, Q. Wei, B. Sain. Optical secret sharing with cascaded metasurface holography. Sci. Adv., 7, eabf9718(2021).

    [6] H. Wang, Z. Qin, L. Huang. Metasurface with dynamic chiral meta-atoms for spin multiplexing hologram and low observable reflection. PhotoniX, 3, 10(2022).

    [7] X. Chen, M. Chen, M. Q. Mehmood. Longitudinal multifoci metalens for circularly polarized light. Adv. Opt. Mater., 3, 1201-1206(2015).

    [8] M. Khorasaninejad, F. Capasso. Metalenses: versatile multi-functional photonic components. Science, 358, eaam8100(2017).

    [9] R. Wang, Y. Intaravanne, S. Li. Metalens for generating a customized vectorial focal curve. Nano Lett., 21, 2081-2087(2021).

    [10] R. Wang, G. Ren, Z. Ren. Reconstructing subwavelength resolution terahertz holographic images. Opt. Express, 30, 7137-7146(2022).

    [11] F. Yue, D. Wen, C. Zhang. Multichannel polarization-controllable superpositions of orbital angular momentum states. Adv. Mater., 29, 1603838(2017).

    [12] Y. Bao, J. Ni, C. W. Qiu. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams. Adv. Mater., 32, 1905659(2020).

    [13] C. Zheng, J. Li, J. T. Li. All-silicon chiral metasurfaces and wavefront shaping assisted by interference. Sci. China Phys. Mech., 64, 114212(2021).

    [14] F. Zhang, Y. Guo, M. Pu. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat. Commun., 14, 1946(2023).

    [15] C. Zheng, J. Li, J. Liu. Creating longitudinally varying vector vortex beams with an all-dielectric metasurface. Laser Photon. Rev., 16, 2200236(2022).

    [16] Z. Wang, S. Li, X. Zhang. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces. Adv. Sci., 7, 2000982(2020).

    [17] X. Chen, L. Huang, H. Mühlenbernd. Dual-polarity plasmonic metalens for visible light. Nat. Commun., 3, 1198(2012).

    [18] M. Khorasaninejad, W. Chen, R. C. Devlin. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [19] S. Wang, P. Wu, V. Su. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [20] L. Li, J. Zhang, Y. Hu. Broadband polarization-switchable multi-focal noninterleaved metalenses in the visible. Laser Photon. Rev., 15, 2100198(2021).

    [21] W. Liu, D. Ma, Z. Li. Aberration-corrected three-dimensional positioning with a single-shot metalens array. Optica, 7, 1706-1713(2020).

    [22] X. Zang, W. Xu, M. Gu. Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging. Adv. Opt. Mater., 8, 1901342(2020).

    [23] S. Krishnan, S. Hampton, J. Rix. Spectral polarization measurements by use of the grating division-of-amplitude photopolarimeter. Appl. Opt., 42, 1216-1227(2003).

    [24] G. Myhre, W. L. Hsu, A. Peinado. Liquid crystal polymer full-Stokes division of focal plane polarimeter. Opt. Express, 20, 27393-27409(2012).

    [25] T. York, V. Gruev. Characterization of a visible spectrum division-of-focal-plane polarimeter. Appl. Opt., 51, 5392-5400(2012).

    [26] S. Gong, Y. Meng, C. Wang. Full-Stokes polarimetry based on rotating metasurfaces. Appl. Phys. Lett., 120, 051110(2022).

    [27] Y. D. Shah, A. C. Dada, J. P. Grant. An all-dielectric metasurface polarimeter. ACS Photon., 9, 3245-3252(2022).

    [28] D. Wen, F. Yue, S. Kumar. Metasurface for characterization of the polarization state of light. Opt. Express, 23, 10272-10281(2015).

    [29] Y. Zhang, J. Jin, M. Pu. Full stokes polarimetry for wide-angle incident light. Phys. Status Solidi R, 14, 2000044(2020).

    [30] C. Zhang, J. Hu, Y. Dong. High efficiency all-dielectric pixelated metasurface for near-infrared full-Stokes polarization detection. Photon. Res., 9, 583-589(2021).

    [31] R. Wang, M. A. Ansari, H. Ahmed. Compact multi-foci metalens spectrometer. Light Sci. Appl., 12, 103(2023).

    [32] Z. Ren, S. Chang, S. Li. Birefringent dielectric multi-foci metalens for polarization detection. Phys. Scr., 98, 045502(2023).

    [33] R. Wang, J. Han, J. Liu. Multi-foci metalens for terahertz polarization detection. Opt. Lett., 45, 3506-3509(2020).

    [34] T. S. Nowack, Y. D. Shah, I. Escorcia. Terahertz polarimetry with a monolithic metasurface. Opt. Lett., 47, 4199-4202(2022).

    [35] Z. Jiang, J. Lu, J. Fan. Polarization-multiplexing bessel vortex beams for polarization detection of continuous terahertz waves. Laser Photon. Rev., 17, 2200484(2023).

    [36] E. Arbabi, S. M. Kamali, A. Arbabi. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photon., 5, 3132-3140(2018).

    [37] X. Wang, Y. Cui, W. Sun. Terahertz polarization real-time imaging based on balanced electro-optic detection. J. Opt. Soc. Am. A, 27, 2387-2393(2010).

    Chenglong Zheng, Hui Li, Jingyu Liu, Mengguang Wang, Huaping Zang, Yan Zhang, Jianquan Yao. Full-Stokes metasurface polarimetry requiring only a single measurement[J]. Photonics Research, 2024, 12(3): 514
    Download Citation