• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 2, 163 (2018)
ZHONG Ying-Hui1、*, LI Kai-Kai1, LI Meng-Ke1, WANG Wen-Bin1, SUN Shu-Xiang1, LI Hui-Long1, DING Peng2, and JIN Zhi2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.02.006 Cite this Article
    ZHONG Ying-Hui, LI Kai-Kai, LI Meng-Ke, WANG Wen-Bin, SUN Shu-Xiang, LI Hui-Long, DING Peng, JIN Zhi. An improved 16-element small-signal model for InP-based HEMTs[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 163 Copy Citation Text show less
    References

    [1] Varonen M, Reeves R, Kangaslahti P, et al. An MMIC low-noise amplifier design technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(3): 826-835.

    [2] Zhong Y H, Li K K, Li X J, et al. A W-band high-gain and low-noise amplifier MMIC using InP-based HEMTs[J]. Journal of Infrared and Millimeter Wave, 2015,34(6): 668-672.

    [3] Rec T, Zemora A, Schlecht E, et al. A 230 GHz MMIC-based sideband separating receiver[J]. IEEE Transaction on Terahertz Science and Technology, 2016 , 6(1): 141-147.

    [4] Rodwell M J W. 50-500 GHz wireless: transistors, ICs, and system design[C]. German Microwave Conference, Germany, CA, 2014: 1-4.

    [5] Deal W, Mei X B, Leong K M K H, et al. THz monolithic integrated circuits using InP high electron mobility transistors[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 25-32.

    [6] Leong K M K H, Mei X B, Yoshida W, et al. A 0.85 THz low noise amplifier using InP HEMT transistors[J]. IEEE Microwave and Wireless Components Letters, 2015, 25(6): 397-399.

    [7] Deal W R, Leong K, Zamora A, et al. Recent progress in scaling InP HEMT TMIC technology to 850 GHz[J]. IEEE MTT-S International Microwave Symposium (IMS), Tampa, FL, USA, CA, 2014: 1-3.

    [8] Jarndal A, Essaadali R, Kouki A B. A reliable model parameter extraction method applied to AlGaN/GaN HEMTs[J]. IEEE Transactions on Computer-Aid Design of Integrated Circuits and Systems, 2016, 35(2): 211-219.

    [9] Parveen, Supriya S, Jogi J, et al. A novel analytical model for small signal parameter for separate gate InAlAs/InGaAs DG-HEMT[C]. IEEE Region 10 Conference (TENCON 2012), Cebu, CA, 2012: 1-6.

    [10] Majumder A, Chatterjee S, Chatterjee S, et al. Optimization of small-signal model of GaN HEMT by using evolutionary algorithms[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 362-364.

    [11] Mei X B, Yoshida W, Lange M, et al. First demonstration of amplifier at 1 THz using 25 nm InP high electron mobility transistor process[J]. IEEE Electron Device Letters, 2015, 36(4): 327-329.

    [12] Sun S X, Ji H F, Yao H J, et al. Physical modeling of direct current and radio frequency characteristics for InP-based InAlAs/InGaAs HEMTS[J]. Chinese Physics B, 2016, 25(10): 108501.

    [13] Zhong Y H, Li K K, Li X J, et al. Impact of the silicon-nitride passivation film thickness on the characteristics of InAlAs/InGaAs InP-based HEMTs[J]. Journal of the Korean Physical Society, 2015, 66(6): 1020-1024.

    [14] Zhong Y H, Wang W B, Sun S, et al. Long-time thermal stability comparison of alloyed and non-alloyed Ohmic contacts for InP-based HEMTs[J]. Physica Status Solid A-Applications and Materials Science, 2017,214(11):1700411.

    ZHONG Ying-Hui, LI Kai-Kai, LI Meng-Ke, WANG Wen-Bin, SUN Shu-Xiang, LI Hui-Long, DING Peng, JIN Zhi. An improved 16-element small-signal model for InP-based HEMTs[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 163
    Download Citation