• Opto-Electronic Engineering
  • Vol. 47, Issue 10, 200337 (2020)
Guan Chunlin1、2, Zhang Xiaojun1、2, Deng Jianming1、2, Xue Lixia1、2, Zhang Yaoping1、2, Zhou Hong1、2、*, Fan Xinlong1、2, Cheng Lin1、2, Fan Junqi1、2, He Gang1、2, Mou Jinbo1、2, and Long Guoyun1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200337 Cite this Article
    Guan Chunlin, Zhang Xiaojun, Deng Jianming, Xue Lixia, Zhang Yaoping, Zhou Hong, Fan Xinlong, Cheng Lin, Fan Junqi, He Gang, Mou Jinbo, Long Guoyun. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electronic Engineering, 2020, 47(10): 200337 Copy Citation Text show less
    References

    [1] Gaffard J P, Jagourel P, Gigan P. Adaptive optics: description of available components at Laserdot[J]. Proceedings of SPIE, 1994, 2201: 688–702.

    [2] Wirth A, Cavaco J, Bruno T, et al. Deformable mirror technolo-gies at AOA xinetics[J]. Proceedings of SPIE, 2013, 8780: 87800M.

    [3] Sinquin J C, Bastard A, Beaufort E, et al. Recent results and future DMs for astronomy and for space applications at CILAS[J]. Proceedings of SPIE, 2014, 9184: 91480G.

    [4] Charton J, Bitenc U, Curis J F, et al. Recent improvements of high density magnetic deformable mirrors: faster, larger and stronger[J]. Proceedings of SPIE, 2014, 9148: 914825.

    [5] Fernández E, Artal P. Membrane deformable mirror for adaptive optics: performance limits in visual optics[J]. Optics Express, 2003, 11(9): 1056–1069.

    [6] Kudryashov A V, Kulakov V B, Kotsuba Y V, et al. Low-cost adaptive optical devices for multipurpose applications[J]. Pro-ceedings of SPIE, 1999, 3688: 469–475.

    [7] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmos-pheric compensation[J]. Journal of the Optical Society of Amer-ica, 1977, 67(3): 360–369.

    [8] Hardy J W. Active optics: a new technology for the control of light[C]//Proceedings of the IEEE, 1978, 66: 651–697.

    [13] Jiang W H, Huang S F, Ling N, et al. Hill-climbing wavefront correction system for large laser engineering[J]. Proceedings of SPIE, 1988, 965: 266–272.

    [15] Jiang WH,Li MQ,Tang GM, et al. Adaptive optics image compensation experiment for star objects[J]. Proceedings of SPIE, 1993, 1920: 381–391.

    [18] Ao M W, Yang P, Yang Z O, et al. A method of aberration mea-surement and correction for entire beam path of ICF beam path[J]. Proceedings of SPIE, 2007, 6823: 68230I.

    [19] JiangWH,Tang G M,Li M G, et al. 21-element infrared adaptive optics system at 2.16-m telescope[J]. Proceedings of SPIE, 1999, 3762: 142–149.

    [21] Ling N, Zhang Y D, Rao X J, et al. Small table-top adaptive optical systems for human retinal imaging[J]. Proceedings of SPIE, 2002, 4825: 99–108.

    [23] Chen M, Liu C, Rui D M, et al. Performance verification of adap-tive optics for satellite-to-ground coherent optical communica-tions at large zenith angle[J]. Optics Express, 2018, 26(4): 4230–4242.

    [24] Chen M, Liu C, Rui D M, et al. Experimental results of atmos-pheric coherent optical communications with adaptive optics[J]. Optics Communications, 2019, 434: 91–96.

    [25] Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Chinese Journal of Astronomy and Astrophysics, 2003, 3(6): 576–586.

    [26] Rao CH, Zhu L, Rao XJ, et al. 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory[J]. Chinese Optics Letters, 2010, 8(10): 966–968.

    [27] Rao CH,Zhu L, Rao XJ, et al. Second generation solar adap-tive optics for 1-m New Vacuum Solar Telescope at the Fuxian Solar Observatory[J]. Chinese Optics Letters, 2015, 13(12): 120101.

    [28] Rao CH,Gu NT,Rao XJ, et al. First light of the 1.8-m solar telescope–CLST[J]. Science China Physics, Mechanics & As-tronomy, 2020, 63(10): 109631.

    [30] Zacharias R A, Beer N R, Bliss E S, et al. Alignment and wave-front control systems of the National Ignition Facility[J]. Optical Engineering, 2004, 43(12): 2873–2884.

    [31] Ebrardt J, Chaput J M. LMJ project status[J]. Journal of Physics: Conference Series, 2008, 112(3): 032005.

    [35] Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Jour-nal of the Optical Society of America A, 1997, 14(11): 2884–2892.

    [39] Zhao L N, Dai Y, Xiao F, et al. Adaptive optics vision simulator basedon 35 element bimorph deformable mirror[J]. Proceedings of SPIE, 2014, 9282: 928237.

    [40] BrusaG, DelVecchioC. Designof anadaptive secondarymirror: a global approach[J]. Applied Optics, 1998, 37(21): 4656–4662.

    [41] Riccardi A, BrusaG, Salinari P, et al. Adaptive secondary mirrors for the Large Binocular Telescope[J]. Proceedings of SPIE, 2003, 5169: 721–732.

    [43] Guo Y M, Zhang A, Fan X L, et al. First light of the deformable secondary mirror-based adaptive optics system on 1.8m tele-scope[J]. Proceedings of SPIE, 2016, 9909: 99091D.

    Guan Chunlin, Zhang Xiaojun, Deng Jianming, Xue Lixia, Zhang Yaoping, Zhou Hong, Fan Xinlong, Cheng Lin, Fan Junqi, He Gang, Mou Jinbo, Long Guoyun. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electronic Engineering, 2020, 47(10): 200337
    Download Citation