• Photonics Research
  • Vol. 6, Issue 12, 1116 (2018)
Lin Li1, Chenliang Chang1、2、3、*, Caojin Yuan1, Shaotong Feng1, Shouping Nie1, Zhi-Cheng Ren2, Hui-Tian Wang2, and Jianping Ding2、4、*
Author Affiliations
  • 1Jiangsu Key Laboratory for Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
  • 2National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
  • 3e-mail: changchenliang@njnu.edu.cn
  • 4e-mail: jpding@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.6.001116 Cite this Article Set citation alerts
    Lin Li, Chenliang Chang, Caojin Yuan, Shaotong Feng, Shouping Nie, Zhi-Cheng Ren, Hui-Tian Wang, Jianping Ding. High efficiency generation of tunable ellipse perfect vector beams[J]. Photonics Research, 2018, 6(12): 1116 Copy Citation Text show less
    References

    [1] S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, H. P. Urbach. Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate. Phys. Rev. Lett., 114, 103903(2015).

    [2] Y. Kozawa, S. Sato. Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams. Opt. Express, 18, 10828-10833(2010).

    [3] X. P. Li, Y. Y. Cao, M. Gu. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt. Lett., 36, 2510-2512(2011).

    [4] W. Yu, Z. Ji, D. Dong, X. Yang, Y. Xiao, Q. Gong, P. Xi, K. Shi. Super-resolution deep imaging with hollow Bessel beam STED microscopy. Laser Photon. Rev., 10, 147-152(2015).

    [5] R. Drevinskas, J. Zhang, M. Beresna, M. Gecevičius, A. G. Kazanskii, Y. P. Svirko. Laser material processing with tightly focused cylindrical vector beams. Appl. Phys. Lett., 108, 221107(2016).

    [6] H. W. Ren, Y. H. Lin, S. T. Wu. Linear to axial or radial polarization conversion using a liquid crystal gel. Appl. Phys. Lett., 89, 051114(2006).

    [7] W. B. Chen, W. Han, D. C. Abeysinghe, R. L. Nelson, Q. Zhan. Generating cylindrical vector beams with subwavelength concentric metallic gratings fabricated on optical fibers. J. Opt., 13, 015003(2011).

    [8] Q. Hu, Z. H. Tan, X. Y. Weng, H. M. Guo, Y. Wang, S. L. Zhuang. Design of cylindrical vector beams based on the rotating Glan polarizing prism. Opt. Express, 21, 7343-7353(2013).

    [9] W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, M. H. Hong. Generation of radially polarized beam with a segmented spiral varying retarder. Opt. Express, 16, 15694-15699(2008).

    [10] Z. Liu, Y. Liu, Y. Ke, Y. Liu, W. Shu, H. Luo, S. Wen. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere. Photon. Res., 5, 15-21(2017).

    [11] P. Chen, W. Ji, B. Y. Wei, W. Hu, V. Chigrinov, Y.-Q. Lu. Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates. Appl. Phys. Lett., 107, 241102(2015).

    [12] M. M. Sánchez-López, J. A. Davis, N. Hashimoto, I. Moreno, E. Hurtado, K. Badham, A. Tanabe, S. W. Delaney. Performance of a q-plate tunable retarder in reflection for the switchable generation of both first- and second-order vector beams. Opt. Lett., 41, 13-16(2016).

    [13] S. C. Tidwell, D. H. Ford, W. D. Kimura. Generating radially polarized beams interferometrically. Appl. Opt., 29, 2234-2239(1990).

    [14] S. Liu, P. Li, T. Peng, J. Zhao. Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer. Opt. Express, 20, 21715-21721(2012).

    [15] C. Y. Han, R. S. Chang, H. F. Chen. Solid-state interferometry of a pentaprism for generating cylindrical vector beam. Opt. Rev., 20, 189-192(2013).

    [16] D. Xu, B. Gu, G. Rui, Q. Zhan, Y. Cui. Generation of arbitrary vector fields based on a pair of orthogonal elliptically polarized base vectors. Opt. Express, 24, 4177-4186(2016).

    [17] I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, D. Sand. Complete polarization control of light from a liquid crystal spatial light modulator. Opt. Express, 20, 364-376(2012).

    [18] C. Rosales-Guzmán, N. Bhebheand, A. Forbes. Simultaneous generation of multiple vector beams on a single SLM. Opt. Express, 25, 25697-25706(2017).

    [19] X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, H. T. Wang. Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett., 32, 3549-3551(2007).

    [20] Z. Chen, T. Zeng, B. Qian, J. Ding. Complete shaping of optical vector beams. Opt. Express, 23, 17701-17710(2015).

    [21] G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, N. Davidson. Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes. Appl. Opt., 46, 3304-3310(2007).

    [22] X. N. Yi, X. H. Ling, Z. Y. Zhang, Y. Li, X. X. Zhou, Y. C. Liu, S. Z. Chen, H. L. Luo, S. C. Wen. Generation of cylindrical vector vortex beams by two cascaded metasurfaces. Opt. Express, 22, 17207-17215(2014).

    [23] S. Z. Chen, X. X. Zhou, Y. H. Liu, X. H. Ling, H. L. Luo, S. C. Wen. Generation of arbitrary cylindrical vector beams on the higher order Poincaré sphere. Opt. Lett., 39, 5274-5276(2014).

    [24] Y. Q. Zhang, X. J. Dou, Y. Yang, C. Xie, J. Bu, C. J. Min, X. C. Yuan. Flexible generation of femtosecond cylindrical vector beams. Chin. Opt. Lett., 15, 030007(2017).

    [25] P. Li, Y. Zhang, S. Liu, C. Ma, L. Han, H. Cheng, J. Zhao. Generation of perfect vectorial vortex beams. Opt. Lett., 41, 2205-2208(2016).

    [26] S. Fu, T. Wang, C. Gao. Generating perfect polarization vortices through encoding liquid-crystal display devices. Appl. Opt., 55, 6501-6505(2016).

    [27] T. Wang, S. Fu, F. He, C. Gao. Generation of perfect polarization vortices using combined gratings in a single spatial light modulator. Appl. Opt., 56, 7567-7571(2017).

    [28] P. Pradhan, M. Sharma, B. Ung. Generation of perfect cylindrical vector beams with complete control over the ring width and ring diameter. IEEE Photon. J., 10, 6500310(2018).

    [29] R. Chakraborty, A. Ghosh. Generation of an elliptic Bessel beam. Opt. Lett., 31, 38-40(2006).

    [30] J. J. Miret, C. J. Zapata-Rodríguez. Diffraction-free beams with elliptic Bessel envelope in periodic media. J. Opt. Soc. Am. B, 25, 1-6(2008).

    [31] A. A. Kovalev, V. V. Kotlyar, A. P. Porfirev. A highly efficient element for generating elliptic perfect optical vortices. Appl. Phys. Lett., 110, 261102(2017).

    [32] X. Z. Li, H. X. Ma, C. L. Yin, J. Tang, H. H. Li, M. M. Tang, J. G. Wang, Y. P. Tai, X. F. Li, Y. S. Wang. Controllable mode transformation in perfect optical vortices. Opt. Express, 26, 651-662(2018).

    [33] J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, I. Moreno. Encoding amplitude information onto phase-only filters. Appl. Opt., 38, 5004-5013(1999).

    [34] V. Arrizón. Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach. Opt. Lett., 28, 1359-1361(2003).

    [35] Y. Qi, C. Chang, J. Xia. Speckleless holographic display by complex modulation based on double-phase method. Opt. Express, 24, 30368-30378(2016).

    [36] R. W. Gerchberg, W. O. Saxton. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik (Stuttgart), 35, 237-246(1972).

    [37] J. S. Liu, M. R. Taghizadeh. Iterative algorithm for the design of diffractive phase elements for laser beam shaping. Opt. Lett., 27, 1463-1465(2002).

    [38] J. A. Rodrigo, T. Alieva, E. Abramochkin, I. Castro. Shaping of light beams along curves in three dimensions. Opt. Express, 21, 20544-20555(2013).

    [39] V. Arrizón, U. Ruiz, R. Carrada, L. A. González. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500-3507(2007).

    [40] J. A. Rodrigo, T. Alieva, A. Cámara, O. Martínez-Matos, P. Cheben, M. L. Calvo. Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections. Opt. Express, 19, 6064-6077(2011).

    [41] S. H. Tao, W. X. Yu. Beam shaping of complex amplitude with separate constraints on the output beam. Opt. Express, 23, 1052-1062(2015).

    [42] C. Chang, J. Xia, L. Yang, W. Lei, Z. Yang, J. Chen. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm. Appl. Opt., 54, 6994-7001(2015).

    [43] C. Rosales-Guzmán, N. Bhebhe, N. Mahonisi, A. Forbes. Multiplexing 200 modes on a single digital hologram. J. Opt., 19, 113501(2017).

    [44] C. Schulze, D. Flamm, M. Duparré, A. Forbes. Beam-quality measurements using a spatial light modulator. Opt. Lett., 37, 4687-4689(2012).

    CLP Journals

    [1] Hui Li, Haigang Liu, Xianfeng Chen. Dual waveband generator of perfect vector beams[J]. Photonics Research, 2019, 7(11): 1340

    [2] Zhengkun Yin, Yunkai Lu, Junjie Yu, Changhe Zhou. A broadband polarization-independent two-port beam splitter under normal incidence based on encapsulated metal-dielectric reflective grating[J]. Chinese Optics Letters, 2020, 18(7): 070501

    [3] Zheng Yuan, Yuan Gao, Zhuang Wang, Hanchao Sun, Chenliang Chang, Xi-Lin Wang, Jianping Ding, Hui-Tian Wang. Curvilinear Poincaré vector beams[J]. Chinese Optics Letters, 2021, 19(3): 032602

    Lin Li, Chenliang Chang, Caojin Yuan, Shaotong Feng, Shouping Nie, Zhi-Cheng Ren, Hui-Tian Wang, Jianping Ding. High efficiency generation of tunable ellipse perfect vector beams[J]. Photonics Research, 2018, 6(12): 1116
    Download Citation