• Journal of Infrared and Millimeter Waves
  • Vol. 38, Issue 1, 91 (2019)
NIU Hai-Sha1、*, ZHU Lian-Qing1, and LIU Kai-Ming2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2019.01.015 Cite this Article
    NIU Hai-Sha, ZHU Lian-Qing, LIU Kai-Ming. Design method of Bernal-Stacked bilayer graphene 1.06 μm resonance-enhanced photodetector[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 91 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 5696(306): 666-669.

    [2] Novoselov K S, Fal'Ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419):192.

    [3] Yoo J J, Balakrishnan K, Huang J, et al. Ultrathin Planar Graphene Supercapacitors[J]. Nano Letters, 2011, 11(4):1423-7.

    [4] Zhang L, Ding Z C, Tong T, et al. Tuning the work functions of graphene quantum dot-modified electrodes for polymer solar cell applications.[J]. Nanoscale, 2017, 9(10):3524.

    [5] Jung S C, Kang Y J, Yoo D J, et al. Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery[J]. Journal of Physical Chemistry C, 2016, 120(25).

    [7] Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications[J]. Nature Photonics, 2010, 4(5):297-301.

    [8] Echtermeyer T J, Britnell L, Jasnos P K, et al. Strong plasmonic enhancement of photovoltage in graphene.[J]. Nature Communications, 2011, 2(1):458.

    [9] Wang X, Cheng Z, Xu K, et al. High-responsivity graphene/silicon-heterostructure waveguide photodetectors[J]. Nature Photonics, 2013, 7(11):888-891.

    [10] Engel M, Steiner M, Lombardo A, et al. Light–matter interaction in a microcavity-controlled graphene transistor[J]. Nature Communications, 2012, 3(2):906.

    [11] Furchi M, Urich A, Pospischil A, et al. Microcavity-integrated graphene photodetector[J]. Nano Lett, 2012, 12(6): 2773-2777.

    [12] Zeng L, Xie C, Tao L, et al. Bilayer graphene based surface passivation enhanced nano structured self-powered near-infrared photodetector[J]. Optics Express, 2015, 23(4):4839-46.

    [13] Liberato S D. Perspectives for gapped bilayer graphene polaritonics[J]. Physics, 2015, 92.

    [16] Vincenti M A, De C D, Grande M, et al. Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect.[J]. Optics Letters, 2013, 38(18):3550.

    [17] T. Siefke, S. Kroker, K. Pfeiffer, et al.. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range, Adv. Opt. Mater.2016, 4: 1780-1786.

    [18] L. Gao, F. Lemarchand, M. Lequime. Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs, J. Europ. Opt. Soc. Rap. Public. 2013, 8: 13010.

    [19] R. Boidin, T. Halenkovic, V. Nazabal, et al.. Pulsed laser deposited alumina thin films, Ceramics International. 2016, 42: 1177-1182.

    NIU Hai-Sha, ZHU Lian-Qing, LIU Kai-Ming. Design method of Bernal-Stacked bilayer graphene 1.06 μm resonance-enhanced photodetector[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 91
    Download Citation