• Chinese Journal of Lasers
  • Vol. 47, Issue 12, 1202006 (2020)
Hu Yue1, Liu Shasha1, Cheng Xu1、*, and Liu Dong1、2
Author Affiliations
  • 1National Engineering Laboratory of Additive Manufacturing for Large Metallic Components, School of Materials Science and Engineering, Beihang University, Beijing 102206, China
  • 2Yu Ding Additive Manufacturing Research Institute Co., Ltd., Beijing 100025, China
  • show less
    DOI: 10.3788/CJL202047.1202006 Cite this Article Set citation alerts
    Hu Yue, Liu Shasha, Cheng Xu, Liu Dong. Finite Element Simulation on Bending Properties of TA2/TA15 Gradient Material by Laser Direct Deposition[J]. Chinese Journal of Lasers, 2020, 47(12): 1202006 Copy Citation Text show less
    References

    [1] Wang R J, Cheng H M, Li J Y. Stress strain analysis of notched specimen based on material property gradient[J]. Procedia Engineering, 31, 360-365(2012).

    [2] Larson E A, Ren X D, Adu-Gyamfi S et al. Effects of scanning path gradient on the residual stress distribution and fatigue life of AA2024-T351 aluminium alloy induced by LSP[J]. Results in Physics, 13, 102123(2019). http://www.researchgate.net/publication/331307438_Effects_of_scanning_path_gradient_on_the_residual_stress_distribution_and_fatigue_life_of_AA2024-T351_aluminium_alloy_induced_by_LSP

    [3] Khor K A, Dong Z L, Gu Y W. Plasma sprayed functionally graded thermal barrier coatings[J]. Materials Letters, 38, 437-444(1999).

    [4] Kawase M, Tago T, Kurosawa M et al. Chemical vapor infiltration and deposition to produce a silicon carbide-carbon functionally gradient material[J]. Chemical Engineering Science, 54, 3327-3334(1999).

    [5] Canakci A, Varol T. Microstructure and properties of AA7075/Al-SiC composites fabricated using powder metallurgy and hot pressing[J]. Powder Technology, 268, 72-79(2014).

    [6] Pasha B A M, Mohamed K. Taguchi approach to influence of processing parameters on erosive wear behaviour of Al7034-T6 composites[J]. Transactions of Nonferrous Metals Society of China, 27, 2163-2171(2017).

    [7] Ghorbantabar Omran J, Shafiee Afarani M, Sharifitabar M. Fast synthesis of MgAl2O4-W and MgAl2O4-W-W2B composite powders by self-propagating high-temperature synthesis reactions[J]. Ceramics International, 44, 6508-6513(2018).

    [8] Qian T T, Liu D, Tian X J et al. Microstructure of TA2/TA15 graded structural material by laser additive manufacturing process[J]. Transactions of Nonferrous Metals Society of China, 24, 2729-2736(2014).

    [9] Santos E C, Shiomi M, Osakada K et al. Rapid manufacturing of metal components by laser forming[J]. International Journal of Machine Tools and Manufacture, 46, 1459-1468(2006). http://www.sciencedirect.com/science/article/pii/S0890695505002683

    [10] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [11] Yao Y S, Wang J, Chen Q B et al. Research status of defects and defect treatment technology for laser additive manufactured products[J]. Laser & Optoelectronics Progress, 56, 100004(2019).

    [12] Yan Z Y, Li Z, Zhou Q J et al. Microstructure evolution of TA15-Ti2AlNb double alloy by laser solid forming[J]. Applied Laser, 39, 785-791(2019).

    [13] Lin X, Yue T M, Yang H O et al. Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy[J]. Metallurgical and Materials Transactions A, 38, 127-137(2007).

    [14] Carroll B E, Otis R A, Borgonia J P et al. Functionally graded material of 304L stainless steel and inconel 625 fabricated by directed energy deposition: characterization and thermodynamic modeling[J]. Acta Materialia, 108, 46-54(2016). http://www.sciencedirect.com/science/article/pii/S1359645416300908

    [15] Hu Y B, Cong W L. A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites[J]. Ceramics International, 44, 20599-20612(2018).

    [16] Qin L Y, Xu L L, Yang G et al. Effect of annealing method on microstructure and mechanical properties of TA15 titanium alloys by laser deposition manufacturing[J]. Chinese Journal of Lasers, 45, 0302004(2018).

    [17] Liang Y J, Liu D, Wang H M. Microstructure and mechanical behavior of commercial purity Ti/Ti-6Al-2Zr-1Mo-1V structurally graded material fabricated by laser additive manufacturing[J]. Scripta Materialia, 74, 80-83(2014).

    [18] Liang Y J, Tian X J, Zhu Y Y et al. Compositional variation and microstructural evolution in laser additive manufactured Ti/Ti-6Al-2Zr-1Mo-1V graded structural material[J]. Materials Science and Engineering A, 599, 242-246(2014). http://smartsearch.nstl.gov.cn/paper_detail.html?id=27c5180b286936d1cc09e226de6a4038

    [19] Zhan Z X. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition[J]. International Journal of Fatigue, 121, 20-29(2019).

    [20] Roumina R, Bruhis M, Masse J P et al. Bending properties of functionally graded 300M steels[J]. Materials Science and Engineering A, 653, 63-70(2016). http://dx.doi.org/10.1016/j.msea.2015.12.012

    [21] Seifoori S, Mirzaei M, Afjoland H. Experimental and FE analysis for accurate measurement of deflection in CFRP and GFRP laminates under bending[J]. Measurement, 153, 107445(2020).

    [22] Li F F, Fang G. Modeling of 3D plastic anisotropy and asymmetry of extruded magnesium alloy and its applications in three-point bending[J]. International Journal of Plasticity, 130, 102704(2020).

    [23] Farabi E, Hodgson P D, Rohrer G S et al. Five-parameter intervariant boundary characterization of martensite in commercially pure titanium[J]. Acta Materialia, 154, 147-160(2018). http://www.sciencedirect.com/science/article/pii/S1359645418303835

    [24] Xin S W. Inductions and discussions of solid state phase transformation of titanium alloy(Ⅴ)-talking about phase and phase-transformation[J]. Titanium Industry Progress, 30, 12-15(2013).

    [25] Collins P C, Banerjee R, Banerjee S et al. Laser deposition of compositionally graded titanium-vanadium and titanium-molybdenum alloys[J]. Materials Science and Engineering A, 352, 118-128(2003). http://www.sciencedirect.com/science/article/pii/S0921509302009097

    [26] Sarrazin-Baudoux C. Abnormal near-threshold fatigue crack propagation of Ti alloys: role of the microstructure[J]. International Journal of Fatigue, 27, 773-782(2005).

    [27] Wang Y F, Chen R, Cheng X et al. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. Journal of Materials Science & Technology, 35, 403-408(2019).

    [28] Yang G, Liu J P, Qin L Y et al. Study on microstructure and high cycle fatigue property of laser deposited TA15 titanium alloy[J]. Infrared and Laser Engineering, 47, 1106003(2018).

    Hu Yue, Liu Shasha, Cheng Xu, Liu Dong. Finite Element Simulation on Bending Properties of TA2/TA15 Gradient Material by Laser Direct Deposition[J]. Chinese Journal of Lasers, 2020, 47(12): 1202006
    Download Citation