• Acta Optica Sinica
  • Vol. 35, Issue 7, 717001 (2015)
Guo Hongbo*, He Xiaowei, Hou Yuqing, Dong Fang, and Zhang Shuling
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201535.0717001 Cite this Article Set citation alerts
    Guo Hongbo, He Xiaowei, Hou Yuqing, Dong Fang, Zhang Shuling. Fluorescence Molecular Tomography Based on Nonconvex Sparse Regularization[J]. Acta Optica Sinica, 2015, 35(7): 717001 Copy Citation Text show less
    References

    [1] Ntziachristos V, Tung C H, Bremer C, et al.. Fluorescence molecular tomography resolves protease activity in vivo[J]. Nature Medicine, 2002, 8(7): 757-761.

    [2] Deliolanis N, Lasser T, Hyde D, et al.. Free-space fluorescence molecular tomography utilizing 360o geometry projections[J]. Optics Letters, 2007, 32(4): 382-384.

    [3] Bai J, Xu Z. Fluorescence Molecular Tomography[M]. Berlin: Springer Berlin Heidelberg, 2013: 185-216.

    [4] Ale A, Ermolayev V, Herzog E, et al.. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography[J]. Nature Methods, 2012, 9(6): 615-620.

    [5] Xu Z, Bai J. Analysis of finite-element-based methods for reducing the ill-posedness in the reconstruction of fluorescence molecular tomography[J]. Progress in Natural Science, 2009, 19(4): 501-509.

    [6] Ale A, Schulz R B, Sarantopoulos A, et al.. Imaging performance of a hybrid X-ray computed tomography -fluorescence molecular tomography system using priors[J]. Medical Physics, 2010, 37(5): 1976-1986.

    [7] Bangerth W, Joshi A. Adaptive finite element methods for the solution of inverse problems in optical tomography[J]. Inverse Problems, 2008, 24(3): 034011.

    [8] Donoho D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829.

    [9] Zhang Q, Qu X, Chen D, et al.. Experimental three-dimensional bioluminescence tomography reconstruction using the lp regularization [J]. Advanced Science Letters, 2012, 16(1): 125-129.

    [10] Baritaux J C, Hassler K, Unser M. An efficient numerical method for general regularization in fluorescence molecular tomography [J]. IEEE Transactions on Medical Imaging, 2010, 29(4): 1075-1087.

    [11] He X, Liang J, Wang X, et al.. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method[J]. Optics Express, 2010, 18(24): 24825-24841.

    [12] Xue Z, Ma X, Zhang Q, et al.. Adaptive regularized method based on homotopy for sparse fluorescence tomography[J]. Applied Optics, 2013, 52(11): 2374-2384.

    [13] Yi H, Chen D, Li W, et al.. Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: A comparative study[J]. Journal of Biomedical Optics, 2013, 18(5): 056013.

    [14] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710.

    [15] Xu Z B. Data modeling: Visual psychology approach and L1/2 regularization theory[C]. Proceedings of the International Congress of Mathmaticians, 2010: 3151-3184.

    [16] Chen X, Yang D, Zhang Q, et al.. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography [J]. Journal of Applied Physics, 2014, 115(18): 184702.

    [17] Zhao L, Yang H, Cong W, et al.. Compressive sensing for early time-gate reconstruction in time-domain fluorescence molecular tomography[C]. Biomedical Optics, Optical Society of America, 2014: BM3A. 37.

    [18] Zhu D, Li C. Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement [J]. Physics in Medicine and Biology, 2014, 59(12): 2901.

    [19] Cong A, Wang G. A finite-element-based reconstruction method for 3D fluorescence tomography[J]. Optics Express, 2005, 13(24): 9847-9857.

    [20] Asif M S, Romberg J. Sparse recovery of streaming signals using L1-homotopy[J]. IEEE Transactions on Signal Processing, 2013, 62(16): 4209-4223.

    [21] Guo H, Hou Y, He X, et al.. Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation[J]. Journal of Innovative Optical Health Sciences, 2014, 7(2): 1350057.

    CLP Journals

    [1] Zhang Xu, Yi Huangjian, Hou Yuqing, Zhang Haibo, He Xiaowei. Fast Reconstruction in Fluorescence Molecular Tomography Based on Locality Preserving Projections[J]. Acta Optica Sinica, 2016, 36(7): 717001

    [2] [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Influence of Supercontinuum Laser on Bioluminescence Imaging Technology[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121401

    [3] Hou Yuqing, Jin Mingyang, He Xiaowei, Zhang Xu. Fluorescence Molecular Tomography Using a Stochastic Variant of Alternating Direction Method of Multipliers[J]. Acta Optica Sinica, 2017, 37(7): 717001

    [4] He Xiaowei, Jin Chen, Yi Huangjian, Zhang Haibo, Hou Yuqing. X-Ray Luminescence Computed Tomography Based on Split Augmented Lagrangian Shrinkage Algorithm[J]. Acta Optica Sinica, 2016, 36(3): 317001

    Guo Hongbo, He Xiaowei, Hou Yuqing, Dong Fang, Zhang Shuling. Fluorescence Molecular Tomography Based on Nonconvex Sparse Regularization[J]. Acta Optica Sinica, 2015, 35(7): 717001
    Download Citation