• Photonics Research
  • Vol. 11, Issue 4, 591 (2023)
Liangjun Lu1,2,†,*, Hongyi Zhang1,†, Xin Li1..., Jianping Chen1,2 and Linjie Zhou1,2|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory of Navigation and Location Services, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2SJTU-Pinghu Institute of Intelligent Optoelectronics, Pinghu 314200, China
  • show less
    DOI: 10.1364/PRJ.483540 Cite this Article Set citation alerts
    Liangjun Lu, Hongyi Zhang, Xin Li, Jianping Chen, Linjie Zhou, "Low temperature sensitivity on-chip Fourier-transform spectrometer based on dual-layer Si3N4 spiral waveguides," Photonics Res. 11, 591 (2023) Copy Citation Text show less
    References

    [1] Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan. Miniaturization of optical spectrometers. Science, 371, eabe0722(2021).

    [2] A. Li, C. Yao, J. Xia, H. Wang, Q. Cheng, R. Penty, Y. Fainman, S. Pan. Advances in cost-effective integrated spectrometers. Light Sci. Appl., 11, 174(2022).

    [3] R. A. Crocombe. Portable spectroscopy. Appl. Spectrosc., 72, 1701-1751(2018).

    [4] M. Florjanczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, D. X. Xu. Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers. Opt. Express, 15, 18176-18189(2007).

    [5] K. Okamoto, H. Aoyagi, K. Takada. Fabrication of Fourier-transform, integrated-optic spatial heterodyne spectrometer on silica-based planar waveguide. Opt. Lett., 35, 2103-2105(2010).

    [6] P. J. Bock, P. Cheben, A. V. Velasco, J. H. Schmid, A. Delâge, M. Florjańczyk, J. Lapointe, D.-X. Xu, M. Vachon, S. Janz, M. L. Calvo. Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator. Laser Photon. Rev., 7, L67-L70(2013).

    [7] T. T. D. Dinh, D. Gonzalez-Andrade, M. Montesinos-Ballester, L. Deniel, B. Szelag, X. Le Roux, E. Cassan, D. Marris-Morini, L. Vivien, P. Cheben, A. V. Velasco, C. Alonso-Ramos. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot’s advantage. Opt. Lett., 46, 1341-1344(2021).

    [8] Z. Huang, Y. Tian, Y. Liu, H. Luo, X. Long, C. Yu. Optical performance monitoring using SOI-based spectral analysis. Opt. Express, 30, 6397-6412(2022).

    [9] H. Podmore, A. Scott, P. Cheben, A. V. Velasco, J. H. Schmid, M. Vachon, R. Lee. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer. Opt. Lett., 42, 1440-1443(2017).

    [10] A. Herrero-Bermello, J. Li, M. Khazaei, Y. Grinberg, A. V. Velasco, M. Vachon, P. Cheben, L. Stankovic, V. Stankovic, D. X. Xu, J. H. Schmid, C. Alonso-Ramos. On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors. Opt. Lett., 44, 5840-5843(2019).

    [11] U. Paudel, T. Rose. Ultra-high resolution and broadband chip-scale speckle enhanced Fourier-transform spectrometer. Opt. Express, 28, 16469-16485(2020).

    [12] H. Wang, Y. Bao, J. Tang, Q. Li, W. Shi, X. Ma. On-chip monolithic Fourier transform spectrometers assisted by cGAN spectral prediction. Opt. Lett., 46, 4288-4291(2021).

    [13] M. Nedeljkovic, A. V. Velasco, A. Z. Khokhar, A. Delage, P. Cheben, G. Z. Mashanovich. Mid-infrared silicon-on-insulator Fourier-transform spectrometer chip. IEEE Photon. Technol. Lett., 28, 528-531(2016).

    [14] T. T. Duong Dinh, X. Le Roux, N. Koompai, D. Melati, M. Montesinos-Ballester, D. Gonzalez-Andrade, P. Cheben, A. V. Velasco, E. Cassan, D. Marris-Morini, L. Vivien, C. Alonso-Ramos. Mid-infrared Fourier-transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides. Opt. Lett., 47, 810-813(2022).

    [15] E. Heidari, X. Xu, C.-J. Chung, R. T. Chen. On-chip Fourier transform spectrometer on silicon-on-sapphire. Opt. Lett., 44, 2883-2886(2019).

    [16] Q. Liu, J. M. Ramirez, V. Vakarin, X. Le Roux, C. Alonso-Ramos, J. Frigerio, A. Ballabio, E. T. Simola, D. Bouville, L. Vivien, G. Isella, D. Marris-Morini. Integrated broadband dual-polarization Ge-rich SiGe mid-infrared Fourier-transform spectrometer. Opt. Lett., 43, 5021-5024(2018).

    [17] D. M. Kita, B. Miranda, D. Favela, D. Bono, J. Michon, H. Lin, T. Gu, J. Hu. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun., 9, 4405(2018).

    [18] J. Du, H. Zhang, X. Wang, W. Xu, L. Lu, J. Chen, L. Zhou. High-resolution on-chip Fourier transform spectrometer based on cascaded optical switches. Opt. Lett., 47, 218-221(2022).

    [19] R. A. Soref, F. De Leonardis, V. M. N. Passaro, Y. Fainman. On-chip digital Fourier-transform spectrometer using a thermo-optical Michelson grating interferometer. J. Lightwave Technol., 36, 5160-5167(2018).

    [20] A. Li, J. Davis, A. Grieco, N. Alshamrani, Y. Fainman. Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution. Photon. Res., 8, 219-224(2020).

    [21] S. Zheng, J. Zou, H. Cai, J. Song, L. Chin, P. Liu, Z. Lin, D. Kwong, A. Liu. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun., 10, 2349(2019).

    [22] J. Li, D.-F. Lu, Z.-M. Qi. A modified equation for the spectral resolution of Fourier transform spectrometers. J. Lightwave Technol., 33, 19-24(2015).

    [23] L. J. Lu, L. J. Zhou, X. M. Sun, J. Y. Xie, Z. Zou, H. E. Zhu, X. W. Li, J. P. Chen. CMOS-compatible temperature-independent tunable silicon optical lattice filters. Opt. Express, 21, 9447-9456(2013).

    [24] S. Tao, Q. Huang, L. Zhu, J. Liu, Y. Zhang, Y. Huang, Y. Wang, J. Xia. Athermal 4-channel (de-)multiplexer in silicon nitride fabricated at low temperature. Photon. Res., 6, 686-691(2018).

    [25] B. Guha, A. Gondarenko, M. Lipson. Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers. Opt. Express, 18, 1879-1887(2010).

    [26] U. A. Korai, A. H. Bermello, M. J. Strain, I. Glesk, A. V. Velasco. Design of an athermal interferometer based on tailored subwavelength metamaterials for on-chip microspectrometry. IEEE Photon. J., 11, 4601611(2019).

    [27] H. Podmore, A. Scott, P. Cheben, C. Sioris, P. Cameron, J. H. Schmid, A. Lohmann, Z. Corriveau, R. Lee. Athermal planar-waveguide Fourier-transform spectrometer for methane detection. Opt. Express, 25, 33018-33028(2017).

    [28] L. Zhou, K. Okamoto, S. J. B. Yoo. Athermalizing and trimming of slotted silicon microring resonators with UV-sensitive PMMA upper-cladding. IEEE Photon. Technol. Lett., 21, 1175-1177(2009).

    [29] S. Feng, K. Shang, J. T. Bovington, R. Wu, B. Guan, K. T. Cheng, J. E. Bowers, S. J. Yoo. Athermal silicon ring resonators clad with titanium dioxide for 1.3 micron wavelength operation. Opt. Express, 23, 25653-25660(2015).

    [30] D. Guo, T. Chu. Compact broadband silicon 3 dB coupler based on shortcuts to adiabaticity. Opt. Lett., 43, 4795-4798(2018).

    [31] I. K. Kim, D. U. Kim, V. H. Nguyen, S. Han, T. J. Seok. High-performance and compact silicon photonic 3-dB adiabatic coupler based on shortest mode transformer method. IEEE Photon. J., 13, 6601106(2021).

    [32] Y. Zhang, S. Yang, A. E. Lim, G. Q. Lo, C. Galland, T. Baehr-Jones, M. Hochberg. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express, 21, 1310-1316(2013).

    [33] B. Guha, J. Cardenas, M. Lipson. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express, 21, 26557-26563(2013).

    [34] P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, A. Adibi. Athermal performance in high-Q polymer-clad silicon microdisk resonators. Opt. Lett., 35, 3462-3464(2010).

    [35] J. T. Robinson, K. Preston, O. Painter, M. Lipson. First-principle derivation of gain in high-index-contrast waveguides. Opt. Express, 16, 16659-16669(2008).

    [36] W. Gao, X. Li, L. J. Lu, J. P. Chen, L. J. Zhou. Broadband, low-crosstalk and power-efficient 32x32 optical switch on a dual-layer Si3N4-on-SOI platform. Optical Fiber Communication Conference (OFC), W4B.4(2022).

    [37] W. Xu, Y. Guo, X. Li, C. Liu, L. Lu, J. Chen, L. Zhou. Fully integrated solid-state LiDAR transmitter on a multi-layer silicon-nitride-on-silicon photonic platform. J. Lightwave Technol., 41, 832-840(2023).

    [38] F. Vogelbacher, S. Nevlacsil, M. Sagmeister, J. Kraft, K. Unterrainer, R. Hainberger. Analysis of silicon nitride partial Euler waveguide bends. Opt. Express, 27, 31394-31406(2019).

    [39] A. Herrero-Bermello, A. V. Velasco, H. Podmore, P. Cheben, J. H. Schmid, S. Janz, M. L. Calvo, D. X. Xu, A. Scott, P. Corredera. Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers. Opt. Lett., 42, 2239-2242(2017).

    Liangjun Lu, Hongyi Zhang, Xin Li, Jianping Chen, Linjie Zhou, "Low temperature sensitivity on-chip Fourier-transform spectrometer based on dual-layer Si3N4 spiral waveguides," Photonics Res. 11, 591 (2023)
    Download Citation