• Laser & Optoelectronics Progress
  • Vol. 60, Issue 18, 1811010 (2023)
Jinhui Shi1,3,*, Weiyan Li1, Shun Wan1, Yiyuan Wang1..., Chunhua Qin1, Zenglin Li2, Zheng Zhu1, Yuxiang Li1 and Chunying Guan1|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang , China
  • 2Shanghai Institute of Measurement and Testing Technology, Shanghai 201109, China
  • 3National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, Heilongjiang , China
  • show less
    DOI: 10.3788/LOP231867 Cite this Article Set citation alerts
    Jinhui Shi, Weiyan Li, Shun Wan, Yiyuan Wang, Chunhua Qin, Zenglin Li, Zheng Zhu, Yuxiang Li, Chunying Guan. Bound States in Continuum in Terahertz Metasurface[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811010 Copy Citation Text show less
    References

    [1] Chen H T, Taylor A J, Yu N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 79, 076401(2016).

    [2] Zang X F, Yao B S, Chen L et al. Metasurfaces for manipulating terahertz waves[J]. Light: Advanced Manufacturing, 2, 148-172(2021).

    [3] Köhler R, Tredicucci A, Beltram F et al. Terahertz semiconductor-heterostructure laser[J]. Nature, 417, 156-159(2002).

    [4] Nuss M C, Orenstein J. Terahertz time-domain spectroscopy[M]. Grüner G. Millimeter and submillimeter wave spectroscopy of solids. Topics in applied physics, 74, 7-50(2007).

    [5] Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and μ[J]. Soviet Physics Uspekhi, 10, 509-514(1968).

    [6] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 339, 1232009(2013).

    [7] Grant J, McCrindle I J H, Li C et al. Multispectral metamaterial absorber[J]. Optics Letters, 39, 1227-1230(2014).

    [8] Cao J H, Quan B G, Chen K L et al. Towards ultra-strong terahertz field enhancement in nanogap split ring resonators[C], WI12(2018).

    [9] Wallauer J, Grumber C, Walther M. Mapping the coupling between a photo-induced local dipole and the eigenmodes of a terahertz metamaterial[J]. Optics Letters, 39, 6138-6141(2014).

    [10] Yao J Q, Li J T, Zhang Y T et al. Bound states in continuum in periodic optical systems[J]. Chinese Optics, 16, 1-23(2023).

    [11] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [12] von Neumann J, Wigner E P. Uber merkwürdige diskrete eigenwerte. uber das verhalten von eigenwerten Bei adiabatischen prozessen[J]. Zhurnal Physik, 30, 467-470(1929).

    [13] Every A G. Guided elastic waves at a periodic array of thin coplanar cavities in a solid[J]. Physical Review B, 78, 174104(2008).

    [14] Friedrich H, Wintgen D. Interfering resonances and bound states in the continuum[J]. Physical Review A, 32, 3231-3242(1985).

    [15] Linton C M, McIver P. Embedded trapped modes in water waves and acoustics[J]. Wave Motion, 45, 16-29(2007).

    [16] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 100, 183902(2008).

    [17] Yang Y, Peng C, Liang Y et al. Analytical perspective for bound states in the continuum in photonic crystal slabs[J]. Physical Review Letters, 113, 037401(2014).

    [18] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 7, 1900383(2019).

    [19] Xiao S Y, Qin M B, Duan J Y et al. Polarization-controlled dynamically switchable high-harmonic generation from all-dielectric metasurfaces governed by dual bound states in the continuum[J]. Physical Review B, 105, 195440(2022).

    [20] Zhao X G, Chen C X, Kaj K et al. Terahertz investigation of bound states in the continuum of metallic metasurfaces[J]. Optica, 7, 1548-1554(2020).

    [21] Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures[J]. Physical Review Letters, 112, 213903(2014).

    [22] Silveirinha M G. Trapping light in open plasmonic nanostructures[J]. Physical Review A, 89, 023813(2014).

    [23] Sadrieva Z F, Sinev I S, Koshelev K L et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness[J]. ACS Photonics, 4, 723-727(2017).

    [24] Liu Z J, Xu Y, Lin Y et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 123, 253901(2019).

    [25] Hsu C W, Zhen B, Lee J et al. Observation of trapped light within the radiation continuum[J]. Nature, 499, 188-191(2013).

    [26] Hsiao H H, Hsu Y C, Liu A Y et al. Ultrasensitive refractive index sensing based on the quasi‐bound states in the continuum of all‐dielectric metasurfaces[J]. Advanced Optical Materials, 10, 2200812(2022).

    [27] Koshelev K, Lepeshov S, Liu M K et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 121, 193903(2018).

    [28] Han S, Pitchappa P, Wang W H et al. Extended bound states in the continuum with symmetry-broken terahertz dielectric metasurfaces[J]. Advanced Optical Materials, 9, 2002001(2021).

    [29] Yesilkoy F, Arvelo E R, Jahani Y et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 13, 390-396(2019).

    [30] Nguyen H, Dubois F, Deschamps T et al. Symmetry breaking in photonic crystals: on-demand dispersion from flatband to Dirac cones[J]. Physical Review Letters, 120, 066102(2018).

    [31] Ma T, Huang Q P, He H C et al. All-dielectric metamaterial analogue of electromagnetically induced transparency and its sensing application in terahertz range[J]. Optics Express, 27, 16624-16634(2019).

    [32] Zhong Y J, Du L H, Liu Q et al. All-silicon terahertz metasurface with sharp Fano resonance and its sensing applications[J]. IEEE Photonics Journal, 13, 4600210(2021).

    [33] Wang J, Kühne J, Karamanos T et al. All‐dielectric crescent metasurface sensor driven by bound states in the continuum[J]. Advanced Functional Materials, 31, 2104652(2021).

    [34] Wang P F, He F Y, Liu J J et al. Ultra-high-Q resonances in terahertz all-silicon metasurfaces based on bound states in the continuum[J]. Photonics Research, 10, 2743-2750(2022).

    [35] Liu D, Yu X, Wu F et al. Terahertz high-Q quasi-bound states in the continuum in laser-fabricated metallic double-slit arrays[J]. Optics Express, 29, 24779-24791(2021).

    [36] Niu J, Zhai Y, Han Q et al. Resonance-trapped bound states in the continuum in metallic THz metasurfaces[J]. Optics Letters, 46, 162-165(2021).

    [37] Scalari G, Maissen C, Cibella S et al. High quality factor, fully switchable terahertz superconducting metasurface[J]. Applied Physics Letters, 105, 261104(2014).

    [38] Cao W, Singh R, Al-Naib I A I et al. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials[J]. Optics Letters, 37, 3366-3368(2012).

    [39] Srivastava Y K, Manjappa M, Cong L Q et al. Ultrahigh-Q Fano resonances in terahertz metasurfaces: strong influence of metallic conductivity at extremely low asymmetry[J]. Advanced Optical Materials, 4, 457-463(2016).

    [40] Gupta M, Savinov V, Xu N N et al. Sharp toroidal resonances in planar terahertz metasurfaces[J]. Advanced Materials, 28, 8206-8211(2016).

    [41] Kim M, Kee C S, Kim S. Graphene-based fine tuning of Fano resonance transmission of quasi-bound states in the continuum[J]. Optics Express, 30, 30666-30671(2022).

    [42] Gao E D, Jin R, Fu Z C et al. Ultrawide dynamic modulation of perfect absorption with a Friedrich-Wintgen BIC[J]. Photonics Research, 11, 456-462(2023).

    [43] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 65, 235112(2002).

    [44] Lee J, Zhen B, Chua S L et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs[J]. Physical Review Letters, 109, 067401(2012).

    [45] Zhang Y W, Chen A, Liu W Z et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 120, 186103(2018).

    [46] Zhen B, Hsu C W, Lu L et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 113, 257401(2014).

    [47] Ye W M, Gao Y, Liu J L. Singular points of polarizations in the momentum space of photonic crystal slabs[J]. Physical Review Letters, 124, 153904(2020).

    [48] Kang M, Mao L, Zhang S P et al. Merging bound states in the continuum by harnessing higher-order topological charges[J]. Light: Science & Applications, 11, 228(2022).

    [49] Jin J C, Yin X F, Ni L F et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 574, 501-504(2019).

    [50] Kang M, Zhang S P, Xiao M et al. Merging bound states in the continuum at off-high symmetry points[J]. Physical Review Letters, 126, 117402(2021).

    [51] Hwang M S, Lee H C, Kim K H et al. Ultralow-threshold laser using super-bound states in the continuum[J]. Nature Communications, 12, 4135(2021).

    [52] Liu W Z, Wang B, Zhang Y W et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 123, 116104(2019).

    [53] Srivastava Y K, Ako R T, Gupta M et al. Terahertz sensing of 7 nm dielectric film with bound states in the continuum metasurfaces[J]. Applied Physics Letters, 115, 151105(2019).

    [54] Chen X, Fan W H, Yan H. Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing[J]. Optics Express, 28, 17102-17112(2020).

    [55] Chen X, Fan W H, Jiang X Q et al. High-Q toroidal dipole metasurfaces driven by bound states in the continuum for ultrasensitive terahertz sensing[J]. Journal of Lightwave Technology, 40, 2181-2190(2022).

    [56] Wang Y L, Han Z H, Du Y et al. Ultrasensitive terahertz sensing with high-Q toroidal dipole resonance governed by bound states in the continuum in all-dielectric metasurface[J]. Nanophotonics, 10, 1295-1307(2021).

    [57] Hentschel M, Schäferling M, Duan X Y et al. Chiral plasmonics[J]. Science Advances, 3, e1602735(2017).

    [58] Chen Y, Deng H C, Sha X B et al. Observation of intrinsic chiral bound states in the continuum[J]. Nature, 613, 474-478(2023).

    [59] Gorkunov M V, Antonov A A, Kivshar Y S. Metasurfaces with maximum chirality empowered by bound states in the continuum[J]. Physical Review Letters, 125, 093903(2020).

    [60] Gorkunov M V, Antonov A A, Tuz V R et al. Bound states in the continuum underpin near-lossless maximum chirality in dielectric metasurfaces[J]. Advanced Optical Materials, 9, 2100797(2021).

    [61] Overvig A, Yu N F, Alù A. Chiral quasi-bound states in the continuum[J]. Physical Review Letters, 126, 073001(2021).

    [62] Shi T, Deng Z L, Geng G Z et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nature Communications, 13, 4111(2022).

    [63] Shen Z L, Fan S T, Yin W et al. Chiral metasurfaces with maximum circular dichroism enabled by out-of-plane plasmonic system[J]. Laser & Photonics Reviews, 16, 2200370(2022).

    [64] Li J T, Yue Z, Li J et al. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum[J]. Optics & Laser Technology, 161, 109173(2023).

    [65] Tang Y H, Liang Y, Yao J et al. Chiral bound states in the continuum in plasmonic metasurfaces[J]. Laser & Photonics Reviews, 17, 2200597(2023).

    [66] Dixon J, Lawrence M, Barton D R et al. Self-isolated Raman lasing with a chiral dielectric metasurface[J]. Physical Review Letters, 126, 123201(2021).

    [67] Solntsev A S, Agarwal G S, Kivshar Y S. Metasurfaces for quantum photonics[J]. Nature Photonics, 15, 327-336(2021).

    [68] Fan Y B, Liang H, Li J et al. Emerging trend in unconventional metasurfaces: from nonlinear, non-Hermitian to nonclassical metasurfaces[J]. ACS Photonics, 9, 2872-2890(2022).

    [69] Tittl A, Leitis A, Liu M K et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 360, 1105-1109(2018).

    [70] Leitis A, Tittl A, Liu M K et al. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval[J]. Science Advances, 5, eaaw2871(2019).

    [71] Xie Y N, Ma Y J, Liu X Y et al. Dual-degree-of-freedom multiplexed metasensor based on quasi-BICs for boosting broadband trace isomer detection by THz molecular fingerprint[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 8600110(2023).

    [72] Sun M, Han Z H. Highly sensitive terahertz fingerprint sensing based on the quasi-guided modes in a distorted photonic lattice[J]. Optics Express, 31, 10947-10954(2023).

    [73] Sun L, Xu L, Wang J Y et al. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing[J]. Nanoscale, 14, 9681-9685(2022).

    [74] Liu X Y, Chen W, Ma Y J et al. Enhancing THz fingerprint detection on the planar surface of an inverted dielectric metagrating[J]. Photonics Research, 10, 2836-2845(2022).

    [75] Zhou Y, Zheng H Y, Kravchenko I I et al. Flat optics for image differentiation[J]. Nature Photonics, 14, 316-323(2020).

    [76] Li J T, Li J E, Zheng C L et al. Spectral amplitude modulation and dynamic near-field displaying of all-silicon terahertz metasurfaces supporting bound states in the continuum[J]. Applied Physics Letters, 119, 241105(2021).

    [77] Cai H C, Li J T, Mao L H. Experimental implementation for near-field displaying application of bound states in continuum supported by terahertz metasurfaces[J]. Optics Express, 31, 2654-2664(2023).

    [78] Fan K B, Shadrivov I V, Padilla W J. Dynamic bound states in the continuum[J]. Optica, 6, 169-173(2019).

    [79] Han S, Cong L Q, Srivastava Y K et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 31, 1901921(2019).

    Jinhui Shi, Weiyan Li, Shun Wan, Yiyuan Wang, Chunhua Qin, Zenglin Li, Zheng Zhu, Yuxiang Li, Chunying Guan. Bound States in Continuum in Terahertz Metasurface[J]. Laser & Optoelectronics Progress, 2023, 60(18): 1811010
    Download Citation