• Photonics Research
  • Vol. 4, Issue 2, 0030 (2016)
Jie Gao1, Yu Zhu1, Donglin Wang1, Yixin Zhang1、2、*, Zhengda Hu1、2, and Mingjian Cheng3
Author Affiliations
  • 1School of Science, Jiangnan University, Wuxi 214122, China
  • 2Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China
  • 3School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
  • show less
    DOI: 10.1364/prj.4.000030 Cite this Article Set citation alerts
    Jie Gao, Yu Zhu, Donglin Wang, Yixin Zhang, Zhengda Hu, Mingjian Cheng. Bessel–Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence[J]. Photonics Research, 2016, 4(2): 0030 Copy Citation Text show less

    Abstract

    We model the effects of weak fluctuations on the probability densities and normalized powers of vortex models for the Bessel–Gauss photon beam with fractional topological charge in the paraxial non-Kolmogorov turbulence channel. We find that probability density of signal vortex models is a function of deviation from the center of the photon beam, and the farther away from the beam center it is, the smaller the probability density is. For fractional topological charge, the average probability densities of signal/crosstalk vortex modes oscillate along the beam radius except the half-integer order. As the beam waist of the photon source grows, the average probability density of signal and crosstalk vortex modes grow together. Moreover, the peak of the average probability density of crosstalk vortex modes shifts outward from the beam center as the beam waist gets larger. The results also show that the smaller index of non-Kolmogorov turbulence and the smaller generalized refractive-index structure parameter may lead to the higher average probability densities of signal vortex modes and lower average probability densities of crosstalk vortex modes. Lower-coherence radius or beam waist can give rise to less reduction of the normalized powers of the signal vortex modes, which is opposite to the normalized powers of crosstalk vortex modes.Physics (Grant No. 11447174), and the Fundamental Research Funds for the Central Universities (JUSRP51517).
    FoBG(r,φ,z)=FoBGfree(r,φ,z)exp[ψ(r,φ,z)],(1)

    View in Article

    FoBGfree(r,φ,z)=1μ(z)(±i)γsin(±πγ)π×exp[ikr2z2kμ(z)r2μ(z)w02]×l0=i|l0|±γl0J|l0|[krrμ(z)]exp(il0φ),(2)

    View in Article

    FoBG(r,φ,z)=|l0|=βl(r,z)exp(ilφ),(3)

    View in Article

    βl(r,z)=12π02πFoBG(r,φ,z)exp(ilφ)dφ.(4)

    View in Article

    Dl(r,z)=|βl(r,z)|2at=(12π)202π02πFoBGfree(r,φ,z)×FoBGfree*(r,φ,z)×exp[ψ(r,φ,z)+ψ*(r,φ,z)]at×exp[il(φφ)]dφdφ.(5)

    View in Article

    exp[ψ(r,φ,z)+ψ*(r,φ,z)]at=exp[4π2k2z01dξ0κΦn(κ)(1J0(κ|ξ(rr)|))dκ],(6)

    View in Article

    exp[ψ(r,φ,z)+ψ*(r,φ,z)]atexp[|rr|2ρ02]=exp[r2+r22rrcos(φφ)ρ02],(7)

    View in Article

    02πexp[inφ1+ηcos(φ1φ2)]dφ1=2πexp(inφ2)In(η),(8)

    View in Article

    Dl(r,z)=sin2(πγ)w02π2w2(z)l0=1(±γl0)2|J|l0|(krrμ(z))|2×exp[(1w2(z)+1ρ02)2r2]Ill0(2r2ρ02),(9)

    View in Article

    Lz(l)=l=lBPll=BPl,(10)

    View in Article

    Pl=0Dl(r,z)rdr=sin2(πγ)w02π2w2(z)l0=1(±γl0)2×0|J|l0|(krrμ(z))|2exp[(1w2(z)1ρ02)2r2]×Ill0(2r2ρ02)rdr.(11)

    View in Article

    Jie Gao, Yu Zhu, Donglin Wang, Yixin Zhang, Zhengda Hu, Mingjian Cheng. Bessel–Gauss photon beams with fractional order vortex propagation in weak non-Kolmogorov turbulence[J]. Photonics Research, 2016, 4(2): 0030
    Download Citation