• Acta Optica Sinica
  • Vol. 35, Issue 3, 323003 (2015)
Tian Lixin1、*, Wen Shangsheng1、2, Huang Weiming1, Xia Yunyun1, and Yao Rihui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201535.0323003 Cite this Article Set citation alerts
    Tian Lixin, Wen Shangsheng, Huang Weiming, Xia Yunyun, Yao Rihui. Study on the Heat Sink Structure and Heat Transfer Effect of Liquid Cooling System for High Power LEDs[J]. Acta Optica Sinica, 2015, 35(3): 323003 Copy Citation Text show less
    References

    [1] A Mills. Solid state lighting—a world of expanding opportunities at LED 2002 [J]. III-Vs Rev, 2003, 16(1): 30-33.

    [2] Xiao Si, Li Lin. A designing of LED stage lighting for long distance [J]. Acta Optica Sinica, 2011, 31(s1): s100307.

    [3] T Cheng, X Luo, S Huang, et al.. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution [J]. Int J Therm Sci, 2010, 49(1): 196-201.

    [4] A Christensen, S Graham. Thermal effects in packaging high power light emitting diode arrays[J]. Appl Therm Eng, 2009, 29(2): 364-371.

    [5] H H Cheng, D S Huang, M T Lin. Heat dissipation design and analysis of high power LED array using the finite element method [J]. Microelectron Reliab, 2012, 52(5): 905-911.

    [6] K Zhang, D G W Xiao, H Fan, et al. Novel cooling solutions for LED solid state lighting [C]. IEEE ICEPT-HDP 2011, 2011: 1-5.

    [7] H H Wu, K H Lin, S T Lin. A study on the heat dissipation of high power multi-chip COB LEDs [J]. Microelectr J, 2012, 43(4): 280-287.

    [8] L Yin, L Yang, W Yang, et al.. Thermal design and analysis of multi- chip LED module with ceramic substrate [J]. Solid State Electron, 2010, 54(12): 1520-1524.

    [9] P Anithambigai, K Dinash, D Mutharasu, et al. Thermal analysis of power LED employing dual interface method and water flow as a cooling system [J]. Thermochim Acta, 2011, 523(1): 237-244.

    [10] Y Lai, N Cordero, F Barthel, et al.. Liquid cooling of bright LEDs for automotive applications [J]. Appl Therm Eng, 2009, 29(5): 1239-1244.

    [11] B Ramos- Alvarado, P Li, H Liu, et al.. CFD study of liquid- cooled heat sinks with microchannel flow field configurations for electronics, fuel cells, and concentrated solar cells [J]. Appl Therm Eng, 2011, 31(14): 2494-2507.

    [12] Y Fan, P S Lee, L W Jin, et al.. A simulation and experimental study of fluid flow and heat transfer on cylindrical oblique-finned heat sink [J]. Int J Heat Mass Tran, 2013, 61: 62-72.

    [13] W Q Tao, Z Y Guo, B X Wang. Field synergy principle for enhancing convective heat transfer – its extension and numerical verifications [J]. Int J Heat Mass Tran, 2002, 45(18): 3849-3856.

    [14] D L Gee, R L Webb. Forced convection heat transfer in helically rib-roughened tubes [J]. Int J Heat Mass Tran, 1980, 23(8): 1127-1136.

    [15] Z Li, X Huai, Y Tao, et al.. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks [J]. Appl Therm Eng, 2007, 27(17): 2803-2814.

    [16] Y Rao, S Zang. Flow and heat transfer characteristics in latticework cooling channels with dimple vortex generators [J]. J Turbomach, 2014, 136(2): 021017.

    [17] Z Y Guo, D Y Li, B X Wang. A novel concept for convective heat transfer enhancement [J]. Int J Heat Mass Tran, 1998, 41(14): 2221-2225.

    [18] L Wei, L Zhichun, M Tingzhen, et al.. Physical quantity synergy in laminar flow field and its application in heat transfer enhancement [J]. Int J Heat Mass Tran, 2009, 52(19): 4669-4672.

    [19] W Liu, Z C Liu, Z Y Guo. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement [J]. Chinese Sci Bull, 2009, 54(19): 3579-3586.

    [20] Y L Zhai, G D Xia, X F Liu, et al.. Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis[J]. Int J Heat Mass Tran, 2014, 68: 224-233.

    [21] Tao Wenquan. Heat Transfer [M]. Xi′an: Northwestern Polytechnical University Press, 2006: 224.

    [22] C Bi, G H Tang, W Q Tao. Heat transfer enhancement in mini-channel heat sinks with dimples and cylindrical grooves [J]. Appl Therm Eng, 2013, 55(1): 121-132.

    CLP Journals

    [1] [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Aluminum Surface Morphologies and Optical Properties of Al/Al2O3 Composite Ceramic Substrate for White LEDs[J]. Acta Optica Sinica, 2016, 36(1): 116001

    [2] Tang Fan, Wang Dan, Guo Zhenning. Optimization Analysis of Cooling Radiator for Light Emitting Diode Based on Chimney Effect[J]. Laser & Optoelectronics Progress, 2017, 54(7): 72301

    [3] Chen Haowei, Wen Shangsheng, Ma Bingxu, Fu Min, Xie Ya. Design of Plant Lighting LED Lamp with Freeform Surface Substrate Based on Light Quantum Theory[J]. Acta Optica Sinica, 2017, 37(2): 222001

    [4] Tang Fan, Guo Zhenning. Design and Experiment of LED Cylindric Sunflower Radiator[J]. Laser & Optoelectronics Progress, 2017, 54(9): 92303

    Tian Lixin, Wen Shangsheng, Huang Weiming, Xia Yunyun, Yao Rihui. Study on the Heat Sink Structure and Heat Transfer Effect of Liquid Cooling System for High Power LEDs[J]. Acta Optica Sinica, 2015, 35(3): 323003
    Download Citation