• Photonics Research
  • Vol. 11, Issue 5, B125 (2023)
Qianru Yang1,3, Hao Hu1, Xiaofeng Li2, and Yu Luo1,*
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 2School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 3e-mail: qianru002@ntu.edu.sg
  • show less
    DOI: 10.1364/PRJ.472233 Cite this Article Set citation alerts
    Qianru Yang, Hao Hu, Xiaofeng Li, Yu Luo, "Cascaded parametric amplification based on spatiotemporal modulations," Photonics Res. 11, B125 (2023) Copy Citation Text show less
    References

    [1] A. M. Shaltout, M. Clerici, N. Kinsey, R. Kaipurath, J. Kim, E. G. Carnemolla, D. Faccio, A. Boltasseva, V. M. Shalaev, M. Ferrera. Doppler-shift emulation using highly time-refracting TCO layer. Conference on Lasers and Electro-Optics (CLEO), 1-2(2016).

    [2] N. Karl, P. P. Vabishchevich, M. R. Shcherbakov, S. Liu, M. B. Sinclair, G. Shvets, I. Brener. Frequency conversion in a time-variant dielectric metasurface. Nano Lett., 20, 7052-7058(2020).

    [3] K. Lee, J. Son, J. Park, B. Kang, W. Jeon, F. Rotermund, B. Min. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photonics, 12, 765-773(2018).

    [4] Z. Liu, Z. Li, K. Aydin. Time-varying metasurfaces based on graphene microribbon arrays. ACS Photon., 3, 2035-2039(2016).

    [5] X. Wen, X. Zhu, A. Fan, W. Y. Tam, J. Zhu, H. W. Wu, F. Lemoult, M. Fink, J. Li. Unidirectional amplification with acoustic non-Hermitian space−time varying metamaterial. Commun. Phys., 5, 18(2022).

    [6] T. T. Koutserimpas, A. Alù, R. Fleury. Parametric amplification and bidirectional invisibility in PT-symmetric time-Floquet systems. Phys. Rev. A, 97, 013839(2018).

    [7] S. Lee, J. Park, H. Cho, Y. Wang, B. Kim, C. Daraio, B. Min. Parametric oscillation of electromagnetic waves in momentum band gaps of a spatiotemporal crystal. Photon. Res., 9, 142-150(2021).

    [8] H. Lira, Z. Yu, S. Fan, M. Lipson. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).

    [9] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, P. T. Rakich. Non-reciprocal interband Brillouin modulation. Nat. Photonics, 12, 613-619(2018).

    [10] X. Guo, Y. Ding, Y. Duan, X. Ni. Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl., 8, 123(2019).

    [11] D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, S.-Y. Zhu. Optical diode made from a moving photonic crystal. Phys. Rev. Lett., 110, 093901(2013).

    [12] S. A. Horsley, J.-H. Wu, M. Artoni, G. C. La Rocca. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett., 110, 223602(2013).

    [13] M. S. Kang, A. Butsch, P. St. J. Russell. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics, 5, 549-553(2011).

    [14] X. Wang, G. Ptitcyn, V. S. Asadchy, A. Díaz-Rubio, M. S. Mirmoosa, S. Fan, S. A. Tretyakov. Nonreciprocity in bianisotropic systems with uniform time modulation. Phys. Rev. Lett., 125, 266102(2020).

    [15] J. Wang, J. F. Herrmann, J. D. Witmer, A. H. Safavi-Naeini, S. Fan. Photonic modal circulator using temporal refractive-index modulation with spatial inversion symmetry. Phys. Rev. Lett., 126, 193901(2021).

    [16] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [17] E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza, A. Alù, J. B. Pendry. Photonics of time-varying media. Adv. Photon., 4, 014002(2022).

    [18] J. N. Winn, S. Fan, J. D. Joannopoulos, E. P. Ippen. Interband transitions in photonic crystals. Phys. Rev. B, 59, 1551-1554(1999).

    [19] A. Bahabad, M. M. Murnane, H. C. Kapteyn. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nat. Photonics, 4, 570-575(2010).

    [20] A. Y. Song, Y. Shi, Q. Lin, S. Fan. Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation. Phys. Rev. A, 99, 013824(2019).

    [21] N. Chamanara, Z.-L. Deck-Léger, C. Caloz, D. Kalluri. Unusual electromagnetic modes in space-time-modulated dispersion-engineered media. Phys. Rev. A, 97, 063829(2018).

    [22] H. Li, H. Moussa, D. Sounas, A. Alù. Parity-time symmetry based on time modulation. Phys. Rev. Appl., 14, 031002(2020).

    [23] P. A. Huidobro, E. Galiffi, S. Guenneau, R. V. Craster, J. B. Pendry. Fresnel drag in space-time-modulated metamaterials. Proc. Natl. Acad. Sci. USA, 116, 24943-24948(2019).

    [24] Y. Sharabi, E. Lustig, M. Segev. Disordered photonic time crystals. Phys. Rev. Lett., 126, 163902(2021).

    [25] E. Galiffi, Y.-T. Wang, Z. Lim, J. B. Pendry, A. Alù, P. A. Huidobro. Wood anomalies and surface-wave excitation with a time grating. Phys. Rev. Lett., 125, 127403(2020).

    [26] K. Wang, A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, S. Fan. Generating arbitrary topological windings of a non-Hermitian band. Science, 371, 1240-1245(2021).

    [27] A. Dutt, M. Minkov, I. A. D. Williamson, S. Fan. Higher-order topological insulators in synthetic dimensions. Light Sci. Appl., 9, 131(2020).

    [28] Q. Lin, M. Xiao, L. Yuan, S. Fan. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun., 7, 13731(2016).

    [29] A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, S. Fan. A single photonic cavity with two independent physical synthetic dimensions. Science, 367, 59-64(2020).

    [30] L. Yuan, Q. Lin, M. Xiao, S. Fan. Synthetic dimension in photonics. Optica, 5, 1396-1405(2018).

    [31] N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, A. Boltasseva. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2, 616-622(2015).

    [32] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, C. Daraio. Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett., 121, 194301(2018).

    [33] T. Kang, B. Fan, J. Qin, W. Yang, S. Xia, Z. Peng, B. Liu, S. Peng, X. Liang, T. Tang, L. Deng, Y. Luo, H. Wang, Q. Zhou, L. Bi. Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms. Photon. Res., 10, 373-380(2022).

    [34] S.-Q. Li, X. Xu, R. Maruthiyodan Veetil, V. Valuckas, R. Paniagua-Domínguez. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [35] K. Midorikawa. Progress on table-top isolated attosecond light sources. Nat. Photonics, 16, 267-278(2022).

    [36] L. Ledezma, R. Sekine, Q. Guo, R. Nehra, S. Jahani, A. Marandi. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 9, 303-308(2022).

    [37] P. A. Andrekson, M. Karlsson. Fiber-based phase-sensitive optical amplifiers and their applications. Adv. Opt. Photon., 12, 367-428(2020).

    [38] C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26, 1817-1839(1982).

    [39] J. A. Levenson, I. Abram, Th. Rivera, Ph. Grangier. Reduction of quantum noise in optical parametric amplification. J. Opt. Soc. Am. B, 10, 2233-2238(1993).

    [40] A. Cullen. A travelling-wave parametric amplifier. Nature, 181, 332(1958).

    [41] P. K. Tien. Parametric amplification and frequency mixing in propagating circuits. J. Appl. Phys., 29, 1347-1357(1958).

    [42] E. S. Cassedy, A. A. Oliner. Dispersion relations in time-space periodic media: Part I—stable interactions. Proc. IEEE, 51, 1342-1359(1963).

    [43] E. Galiffi, P. A. Huidobro, J. B. Pendry. Broadband nonreciprocal amplification in luminal metamaterials. Phys. Rev. Lett., 123, 206101(2019).

    [44] E. S. Cassedy. Dispersion relations in time-space periodic media part II—Unstable interactions. Proc. IEEE, 55, 1154-1168(1967).

    [45] Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, R. T. Chen. Mid-infrared silicon photonic waveguides and devices [Invited]. Photon. Res., 6, 254-276(2018).

    [46] X. Lin, H. Hu, S. Easo, Y. Yang, Y. Shen, K. Yin, M. P. Blago, I. Kaminer, B. Zhang, H. Chen, J. Joannopoulos, M. Soljacic. A Brewster route to Cherenkov detectors. Nat. Commun., 12, 5554(2021).

    [47] H. Hu, X. Lin, D. Liu, H. Chen, B. Zhang, Y. Luo. Broadband enhancement of Cherenkov radiation using dispersionless plasmons. Adv. Sci., 9, 2200538(2022).

    [48] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538-561(2020).

    [49] H. Hu, X. Lin, L. J. Wong, Q. Yang, D. Liu, B. Zhang, Y. Luo. Surface Dyakonov–Cherenkov radiation. eLight, 2, 2(2022).

    [50] D. Holberg, K. Kunz. Parametric properties of fields in a slab of time-varying permittivity. IEEE Trans. Antennas Propag., 14, 183-194(1966).

    [51] D. E. Holberg. Electromagnetic Wave Propagation in Media of Periodically Time-Varying Permittivity(1965).

    Qianru Yang, Hao Hu, Xiaofeng Li, Yu Luo, "Cascaded parametric amplification based on spatiotemporal modulations," Photonics Res. 11, B125 (2023)
    Download Citation