• Photonics Research
  • Vol. 11, Issue 5, B125 (2023)
Qianru Yang1、3, Hao Hu1, Xiaofeng Li2, and Yu Luo1、*
Author Affiliations
  • 1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • 2School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
  • 3e-mail: qianru002@ntu.edu.sg
  • show less
    DOI: 10.1364/PRJ.472233 Cite this Article Set citation alerts
    Qianru Yang, Hao Hu, Xiaofeng Li, Yu Luo. Cascaded parametric amplification based on spatiotemporal modulations[J]. Photonics Research, 2023, 11(5): B125 Copy Citation Text show less
    References

    [1] A. M. Shaltout, M. Clerici, N. Kinsey, R. Kaipurath, J. Kim, E. G. Carnemolla, D. Faccio, A. Boltasseva, V. M. Shalaev, M. Ferrera. Doppler-shift emulation using highly time-refracting TCO layer. Conference on Lasers and Electro-Optics (CLEO), 1-2(2016).

    [2] N. Karl, P. P. Vabishchevich, M. R. Shcherbakov, S. Liu, M. B. Sinclair, G. Shvets, I. Brener. Frequency conversion in a time-variant dielectric metasurface. Nano Lett., 20, 7052-7058(2020).

    [3] K. Lee, J. Son, J. Park, B. Kang, W. Jeon, F. Rotermund, B. Min. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photonics, 12, 765-773(2018).

    [4] Z. Liu, Z. Li, K. Aydin. Time-varying metasurfaces based on graphene microribbon arrays. ACS Photon., 3, 2035-2039(2016).

    [5] X. Wen, X. Zhu, A. Fan, W. Y. Tam, J. Zhu, H. W. Wu, F. Lemoult, M. Fink, J. Li. Unidirectional amplification with acoustic non-Hermitian space−time varying metamaterial. Commun. Phys., 5, 18(2022).

    [6] T. T. Koutserimpas, A. Alù, R. Fleury. Parametric amplification and bidirectional invisibility in PT-symmetric time-Floquet systems. Phys. Rev. A, 97, 013839(2018).

    [7] S. Lee, J. Park, H. Cho, Y. Wang, B. Kim, C. Daraio, B. Min. Parametric oscillation of electromagnetic waves in momentum band gaps of a spatiotemporal crystal. Photon. Res., 9, 142-150(2021).

    [8] H. Lira, Z. Yu, S. Fan, M. Lipson. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett., 109, 033901(2012).

    [9] E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, P. T. Rakich. Non-reciprocal interband Brillouin modulation. Nat. Photonics, 12, 613-619(2018).

    [10] X. Guo, Y. Ding, Y. Duan, X. Ni. Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl., 8, 123(2019).

    [11] D.-W. Wang, H.-T. Zhou, M.-J. Guo, J.-X. Zhang, J. Evers, S.-Y. Zhu. Optical diode made from a moving photonic crystal. Phys. Rev. Lett., 110, 093901(2013).

    [12] S. A. Horsley, J.-H. Wu, M. Artoni, G. C. La Rocca. Optical nonreciprocity of cold atom Bragg mirrors in motion. Phys. Rev. Lett., 110, 223602(2013).

    [13] M. S. Kang, A. Butsch, P. St. J. Russell. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics, 5, 549-553(2011).

    [14] X. Wang, G. Ptitcyn, V. S. Asadchy, A. Díaz-Rubio, M. S. Mirmoosa, S. Fan, S. A. Tretyakov. Nonreciprocity in bianisotropic systems with uniform time modulation. Phys. Rev. Lett., 125, 266102(2020).

    [15] J. Wang, J. F. Herrmann, J. D. Witmer, A. H. Safavi-Naeini, S. Fan. Photonic modal circulator using temporal refractive-index modulation with spatial inversion symmetry. Phys. Rev. Lett., 126, 193901(2021).

    [16] A. M. Shaltout, V. M. Shalaev, M. L. Brongersma. Spatiotemporal light control with active metasurfaces. Science, 364, eaat3100(2019).

    [17] E. Galiffi, R. Tirole, S. Yin, H. Li, S. Vezzoli, P. A. Huidobro, M. G. Silveirinha, R. Sapienza, A. Alù, J. B. Pendry. Photonics of time-varying media. Adv. Photon., 4, 014002(2022).

    [18] J. N. Winn, S. Fan, J. D. Joannopoulos, E. P. Ippen. Interband transitions in photonic crystals. Phys. Rev. B, 59, 1551-1554(1999).

    [19] A. Bahabad, M. M. Murnane, H. C. Kapteyn. Quasi-phase-matching of momentum and energy in nonlinear optical processes. Nat. Photonics, 4, 570-575(2010).

    [20] A. Y. Song, Y. Shi, Q. Lin, S. Fan. Direction-dependent parity-time phase transition and nonreciprocal amplification with dynamic gain-loss modulation. Phys. Rev. A, 99, 013824(2019).

    [21] N. Chamanara, Z.-L. Deck-Léger, C. Caloz, D. Kalluri. Unusual electromagnetic modes in space-time-modulated dispersion-engineered media. Phys. Rev. A, 97, 063829(2018).

    [22] H. Li, H. Moussa, D. Sounas, A. Alù. Parity-time symmetry based on time modulation. Phys. Rev. Appl., 14, 031002(2020).

    [23] P. A. Huidobro, E. Galiffi, S. Guenneau, R. V. Craster, J. B. Pendry. Fresnel drag in space-time-modulated metamaterials. Proc. Natl. Acad. Sci. USA, 116, 24943-24948(2019).

    [24] Y. Sharabi, E. Lustig, M. Segev. Disordered photonic time crystals. Phys. Rev. Lett., 126, 163902(2021).

    [25] E. Galiffi, Y.-T. Wang, Z. Lim, J. B. Pendry, A. Alù, P. A. Huidobro. Wood anomalies and surface-wave excitation with a time grating. Phys. Rev. Lett., 125, 127403(2020).

    [26] K. Wang, A. Dutt, K. Y. Yang, C. C. Wojcik, J. Vučković, S. Fan. Generating arbitrary topological windings of a non-Hermitian band. Science, 371, 1240-1245(2021).

    [27] A. Dutt, M. Minkov, I. A. D. Williamson, S. Fan. Higher-order topological insulators in synthetic dimensions. Light Sci. Appl., 9, 131(2020).

    [28] Q. Lin, M. Xiao, L. Yuan, S. Fan. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun., 7, 13731(2016).

    [29] A. Dutt, Q. Lin, L. Yuan, M. Minkov, M. Xiao, S. Fan. A single photonic cavity with two independent physical synthetic dimensions. Science, 367, 59-64(2020).

    [30] L. Yuan, Q. Lin, M. Xiao, S. Fan. Synthetic dimension in photonics. Optica, 5, 1396-1405(2018).

    [31] N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, A. Boltasseva. Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica, 2, 616-622(2015).

    [32] Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, C. Daraio. Observation of nonreciprocal wave propagation in a dynamic phononic lattice. Phys. Rev. Lett., 121, 194301(2018).

    [33] T. Kang, B. Fan, J. Qin, W. Yang, S. Xia, Z. Peng, B. Liu, S. Peng, X. Liang, T. Tang, L. Deng, Y. Luo, H. Wang, Q. Zhou, L. Bi. Mid-infrared active metasurface based on Si/VO2 hybrid meta-atoms. Photon. Res., 10, 373-380(2022).

    [34] S.-Q. Li, X. Xu, R. Maruthiyodan Veetil, V. Valuckas, R. Paniagua-Domínguez. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science, 364, 1087-1090(2019).

    [35] K. Midorikawa. Progress on table-top isolated attosecond light sources. Nat. Photonics, 16, 267-278(2022).

    [36] L. Ledezma, R. Sekine, Q. Guo, R. Nehra, S. Jahani, A. Marandi. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides. Optica, 9, 303-308(2022).

    [37] P. A. Andrekson, M. Karlsson. Fiber-based phase-sensitive optical amplifiers and their applications. Adv. Opt. Photon., 12, 367-428(2020).

    [38] C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 26, 1817-1839(1982).

    [39] J. A. Levenson, I. Abram, Th. Rivera, Ph. Grangier. Reduction of quantum noise in optical parametric amplification. J. Opt. Soc. Am. B, 10, 2233-2238(1993).

    [40] A. Cullen. A travelling-wave parametric amplifier. Nature, 181, 332(1958).

    [41] P. K. Tien. Parametric amplification and frequency mixing in propagating circuits. J. Appl. Phys., 29, 1347-1357(1958).

    [42] E. S. Cassedy, A. A. Oliner. Dispersion relations in time-space periodic media: Part I—stable interactions. Proc. IEEE, 51, 1342-1359(1963).

    [43] E. Galiffi, P. A. Huidobro, J. B. Pendry. Broadband nonreciprocal amplification in luminal metamaterials. Phys. Rev. Lett., 123, 206101(2019).

    [44] E. S. Cassedy. Dispersion relations in time-space periodic media part II—Unstable interactions. Proc. IEEE, 55, 1154-1168(1967).

    [45] Y. Zou, S. Chakravarty, C.-J. Chung, X. Xu, R. T. Chen. Mid-infrared silicon photonic waveguides and devices [Invited]. Photon. Res., 6, 254-276(2018).

    [46] X. Lin, H. Hu, S. Easo, Y. Yang, Y. Shen, K. Yin, M. P. Blago, I. Kaminer, B. Zhang, H. Chen, J. Joannopoulos, M. Soljacic. A Brewster route to Cherenkov detectors. Nat. Commun., 12, 5554(2021).

    [47] H. Hu, X. Lin, D. Liu, H. Chen, B. Zhang, Y. Luo. Broadband enhancement of Cherenkov radiation using dispersionless plasmons. Adv. Sci., 9, 2200538(2022).

    [48] N. Rivera, I. Kaminer. Light–matter interactions with photonic quasiparticles. Nat. Rev. Phys., 2, 538-561(2020).

    [49] H. Hu, X. Lin, L. J. Wong, Q. Yang, D. Liu, B. Zhang, Y. Luo. Surface Dyakonov–Cherenkov radiation. eLight, 2, 2(2022).

    [50] D. Holberg, K. Kunz. Parametric properties of fields in a slab of time-varying permittivity. IEEE Trans. Antennas Propag., 14, 183-194(1966).

    [51] D. E. Holberg. Electromagnetic Wave Propagation in Media of Periodically Time-Varying Permittivity(1965).

    Qianru Yang, Hao Hu, Xiaofeng Li, Yu Luo. Cascaded parametric amplification based on spatiotemporal modulations[J]. Photonics Research, 2023, 11(5): B125
    Download Citation