• Acta Physica Sinica
  • Vol. 69, Issue 1, 010303-1 (2020)
Li Wang1, Jing-Si Liu2, Ji Li3, Xiao-Lin Zhou4, Xiang-Rong Chen1, Chao-Fei Liu5、*, and Wu-Ming Liu6、7、*
Author Affiliations
  • 1College of Physics, Sichuan University, Chengdu 610065, China
  • 2Beijing Jingshan School Chaoyang Branch School, Beijing 100012, China
  • 3College of Physics, Taiyuan Normal University, Jinzhong, 030619, China
  • 4School of Physics and Electronic engineering, Sichuan Normal University, Chengdu 610101, China
  • 5School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • 6Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 7School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.7498/aps.69.20191648 Cite this Article
    Li Wang, Jing-Si Liu, Ji Li, Xiao-Lin Zhou, Xiang-Rong Chen, Chao-Fei Liu, Wu-Ming Liu. The research progress of topological properties in spinor Bose-Einstein condensates[J]. Acta Physica Sinica, 2020, 69(1): 010303-1 Copy Citation Text show less
    Optical trapping of 23Na condensates in all F = 1 hyperfine states: shown are absorption images after (a) 250 ms and (b) 340 ms of optical confinement.光势阱中F = 1 23Na凝聚体的超精细态[16]. (a) 250 ms时光势阱中钠原子的吸收图像; (b) 340 ms时光势阱中钠原子的吸收图像
    Fig. 1. Optical trapping of 23Na condensates in all F = 1 hyperfine states: shown are absorption images after (a) 250 ms and (b) 340 ms of optical confinement. 光势阱中F = 1 23Na凝聚体的超精细态[16]. (a) 250 ms时光势阱中钠原子的吸收图像; (b) 340 ms时光势阱中钠原子的吸收图像
    Absorptive image of Rb atomic cloud after 10 ms free expansion in a Stern-Gerlach magnetic field gradient. Three distinct components are observed corresponding to F = 1, mF = (–1, 0, 1) spin projections from bottom to top, respectively.铷原子云在Stern-Gerlach梯度磁场中自由膨胀10 ms后的吸收图像[17]. 从下到上分别是F = 1, mF = (–1, 0, 1)凝聚体的三个分量
    Fig. 2. Absorptive image of Rb atomic cloud after 10 ms free expansion in a Stern-Gerlach magnetic field gradient. Three distinct components are observed corresponding to F = 1, mF = (–1, 0, 1) spin projections from bottom to top, respectively. 铷原子云在Stern-Gerlach梯度磁场中自由膨胀10 ms后的吸收图像[17]. 从下到上分别是F = 1, mF = (–1, 0, 1)凝聚体的三个分量
    The pseudospin density distribution for (a) Sz, (b) Sx and (c) Sy for Ω = 0; (d) the vectorial representation of the spin texture projected onto the x-y plane.赝自旋密度Sz, Sx, Sy的空间分布[73] (a)−(c)表示旋转角频率为0; (d)自旋纹理投影到x-y平面内的矢量表示
    Fig. 3. The pseudospin density distribution for (a) Sz, (b) Sx and (c) Sy for Ω = 0; (d) the vectorial representation of the spin texture projected onto the x-y plane. 赝自旋密度Sz, Sx, Sy的空间分布[73]  (a)−(c)表示旋转角频率为0; (d)自旋纹理投影到x-y平面内的矢量表示
    Approximate half-quantum vortex solution in the spin-1 BEC and the corresponding singular spin texture: (a) and (b) are the densities of the 和components, respectively; (c) and (d) are the corresponding phases; (e) shows the profile of the half-quantum vortex; (f) spin density|S|; (g) the profile of the spin density|S|; (h) spin texture; (i) topological charge density .自旋1 BEC中半量子涡旋的近似解和相应的奇异自旋纹理[77] (a)和(b)对应和分量的密度; (c)和(d)是对应的相; (e)为半量子涡旋的分布; (f)|S|自旋密度; (g) |S|自旋密度分布; (h)自旋纹理; (i)拓扑荷密度
    Fig. 4. Approximate half-quantum vortex solution in the spin-1 BEC and the corresponding singular spin texture: (a) and (b) are the densities of the 和 components, respectively; (c) and (d) are the corresponding phases; (e) shows the profile of the half-quantum vortex; (f) spin density|S|; (g) the profile of the spin density|S|; (h) spin texture; (i) topological charge density . 自旋1 BEC中半量子涡旋的近似解和相应的奇异自旋纹理[77]  (a)和(b)对应 和 分量的密度; (c)和(d)是对应的相; (e)为半量子涡旋的分布; (f)|S|自旋密度; (g) |S|自旋密度分布; (h)自旋纹理; (i)拓扑荷密度
    Two common vector field configurations of two-dimensional skyrmions: (a) The hedgehog type skyrmion; (b) the spiral type skyrmion.两种常见的二维skyrmions的矢量场构型[79] (a) 豪猪型skyrmion; (b) 螺旋型skyrmion
    Fig. 5. Two common vector field configurations of two-dimensional skyrmions: (a) The hedgehog type skyrmion; (b) the spiral type skyrmion.两种常见的二维skyrmions的矢量场构型[79]  (a) 豪猪型skyrmion; (b) 螺旋型skyrmion
    The spatial profile of the stable 3D skyrmions in the x-y and z-x planes: The arrows and their colors in (a) indicate the pseudospin direction and the U(1) phase of the OP, respectively; the color maps of (b) and (c) give the amplitudes and , respectively.稳定的三维skyrmions在x-y和z-x平面的空间分布[83] (a)中的箭头和颜色分别表示贋自旋方向和OP的U(1)相分布. 彩图(b)和(c)分别表示和的振幅
    Fig. 6. The spatial profile of the stable 3D skyrmions in the x-y and z-x planes: The arrows and their colors in (a) indicate the pseudospin direction and the U(1) phase of the OP, respectively; the color maps of (b) and (c) give the amplitudes and , respectively. 稳定的三维skyrmions在x-yz-x平面的空间分布[83]  (a)中的箭头和颜色分别表示贋自旋方向和OP的U(1)相分布. 彩图(b)和(c)分别表示 和 的振幅
    Dynamics of the creation of knots in a spherical optical trap under a quadrupole magnetic field. Snapshots of the preimages of = (0, 0, –1) T and = (1, 0, 0)T(top), and the cross sections of the density for the m = –1 components on the x–y plane (bottom).四极场作用下球形光势阱中扭结产生的动力学过程[85]. 上一行表示和= (1, 0, 0)T的图像快照, 下一行表示x-y平面上m = –1分量的密度截面
    Fig. 7. Dynamics of the creation of knots in a spherical optical trap under a quadrupole magnetic field. Snapshots of the preimages of = (0, 0, –1) T and = (1, 0, 0)T(top), and the cross sections of the density for the m = –1 components on the xy plane (bottom). 四极场作用下球形光势阱中扭结产生的动力学过程[85]. 上一行表示 和 = (1, 0, 0)T的图像快照, 下一行表示x-y平面上m = –1分量的密度截面
    Structure of the knot soliton and the method of its creation: Schematic magnetic field lines before (a) and during (b) the knot formation, with respect to the condensate (green ellipse); (c), (d) as the knot is tied, the initially z-pointing nematic vector (black arrows) precesses about the direction of the local magnetic field (cyan lines) to achieve the final configuration (coloured arrows); the dashed grey line shows where dz = 0, the white line indicates the soliton core (dz = –1), and the dark grey line defines the boundary of the volume V (dz= 1); (e) the knot soliton configuration in real space and its relation to the nematic vector in S2 (inset).扭结孤子的结构及其产生方法[89] (a)和(b)为扭结形成之前和形成过程中磁感应线的示意图, 绿色椭圆为对应的凝聚体; (c)和(d)显示扭结形成时, 最初的z方向的向列相矢量(黑色箭头)沿着局部磁场(青色线)的方向进动, 以实现最终的结构(彩色箭头). 灰色虚线表示dz = 0, 白线表示孤子核(dz = –1), 深灰色线表示体积V(dz = 1)的边界; (e)表示实空间中扭结孤子的构型及其与S2中向列矢量的关系
    Fig. 8. Structure of the knot soliton and the method of its creation: Schematic magnetic field lines before (a) and during (b) the knot formation, with respect to the condensate (green ellipse); (c), (d) as the knot is tied, the initially z-pointing nematic vector (black arrows) precesses about the direction of the local magnetic field (cyan lines) to achieve the final configuration (coloured arrows); the dashed grey line shows where dz = 0, the white line indicates the soliton core (dz = –1), and the dark grey line defines the boundary of the volume V (dz= 1); (e) the knot soliton configuration in real space and its relation to the nematic vector in S2 (inset). 扭结孤子的结构及其产生方法[89]  (a)和(b)为扭结形成之前和形成过程中磁感应线的示意图, 绿色椭圆为对应的凝聚体; (c)和(d)显示扭结形成时, 最初的z方向的向列相矢量(黑色箭头)沿着局部磁场(青色线)的方向进动, 以实现最终的结构(彩色箭头). 灰色虚线表示dz = 0, 白线表示孤子核(dz = –1), 深灰色线表示体积V(dz = 1)的边界; (e)表示实空间中扭结孤子的构型及其与S2中向列矢量 的关系
    Configuration of the skyrmion where λ = 0.5: The (a)−(h) figures indicate the mode of the spin vectors: (a) radial-out skyrmion, (b) radial-in skyrmion, (c) circular skyrmion, (d) hyperbolic skyrmion, (e) hyperbolic-radial(out) skyrmion, (f) hyperbolic-radial (in) skyrmion, (g) circular-hyperbolic skyrmion-I, and (h) circular-hyperbolic skyrmion-II[99].Skyrmions的类型(λ = 0.5)[99] (a)−(h)表示自旋矢量的模式: (a)径向-向外skyrmion, (b)径向-向内skyrmion, (c)环形skyrmion, (d)双曲skyrmion, (e)双曲-径向向外skyrmion, (f)双曲-径向向内skyrmion, (g)环形-双曲skyrmion-I, (h)环形-双曲skyrmion-II
    Fig. 9. Configuration of the skyrmion where λ = 0.5: The (a)−(h) figures indicate the mode of the spin vectors: (a) radial-out skyrmion, (b) radial-in skyrmion, (c) circular skyrmion, (d) hyperbolic skyrmion, (e) hyperbolic-radial(out) skyrmion, (f) hyperbolic-radial (in) skyrmion, (g) circular-hyperbolic skyrmion-I, and (h) circular-hyperbolic skyrmion-II[99]. Skyrmions的类型(λ = 0.5)[99]  (a)−(h)表示自旋矢量的模式: (a)径向-向外skyrmion, (b)径向-向内skyrmion, (c)环形skyrmion, (d)双曲skyrmion, (e)双曲-径向向外skyrmion, (f)双曲-径向向内skyrmion, (g)环形-双曲skyrmion-I, (h)环形-双曲skyrmion-II
    Particle number densities (the first and second columns) and phase distributions (the third and fourth columns) of ground state of the two-component BEC of 87Rb for the different spin-orbit coupling strengths: the parameters of in (a)−(d) are 0, 0.2, 0.8, 2, respectively[107].不同自旋-轨道耦合强度下梯度磁场中两分量87RbBEC基态粒子数密度分布(第1、2列)和相位分布(第3、4列)[107] (a)−(d)的值分别为0, 0.2, 0.8, 2
    Fig. 10. Particle number densities (the first and second columns) and phase distributions (the third and fourth columns) of ground state of the two-component BEC of 87Rb for the different spin-orbit coupling strengths: the parameters of in (a)−(d) are 0, 0.2, 0.8, 2, respectively[107]. 不同自旋-轨道耦合强度下梯度磁场中两分量87RbBEC基态粒子数密度分布(第1、2列)和相位分布(第3、4列)[107]  (a)−(d)的 值分别为0, 0.2, 0.8, 2
    Dynamical formation of vortices: vortices are formed in all components, more than 99% of total population is in ψ–1 component. In the ψ0 component, dynamical and topological vortices coexist[110].涡旋的动力学形成[110]. 涡旋形成于凝聚体的所有分量中, 在ψ–1分量中占99%以上, 在ψ0分量中动态涡旋和拓扑涡旋共存
    Fig. 11. Dynamical formation of vortices: vortices are formed in all components, more than 99% of total population is in ψ1 component. In the ψ0 component, dynamical and topological vortices coexist[110]. 涡旋的动力学形成[110]. 涡旋形成于凝聚体的所有分量中, 在ψ–1分量中占99%以上, 在ψ0分量中动态涡旋和拓扑涡旋共存
    Experimental creation of Dirac monopoles. Each row (a)−(f) contains images of an individual condensate. The leftmost column shows colour composite images of the column densities taken along the horizontal axis for the three spin states; The rightmost three columns show images taken along the vertical axis[80].狄拉克磁单极子的实验产生[80] (a)−(f)每一行都包含单个凝聚体的图像. 最左边的列显示了三种自旋状态沿水平轴的柱状密度彩色图像; 最右边三列显示沿纵轴拍摄的图像
    Fig. 12. Experimental creation of Dirac monopoles. Each row (a)−(f) contains images of an individual condensate. The leftmost column shows colour composite images of the column densities taken along the horizontal axis for the three spin states ; The rightmost three columns show images taken along the vertical axis[80]. 狄拉克磁单极子的实验产生[80]  (a)−(f)每一行都包含单个凝聚体的图像. 最左边的列显示了三种自旋状态 沿水平轴的柱状密度彩色图像; 最右边三列显示沿纵轴拍摄的图像
    The effect of rotation frequency for spinor BEC of 23Na with , , κx = κy = κz = 1, , and a2 = 55 aB: (a) Ω = 0; (b) Ω = 0.2 ω; (c) Ω = 0.5 ω. The fourth column shows the corresponding spin textures and the positions of the vortices[118].旋转频率对23Na旋量BEC的影响[118], 其中, , κx = κy = κz = 1, , and a2 = 55 aB (a) Ω = 0; (b) Ω = 0.2 ω; (c) Ω = 0.5 ω. 第四列显示了相应的自旋纹理和涡旋的位置
    Fig. 13. The effect of rotation frequency for spinor BEC of 23Na with , , κx = κy = κz = 1, , and a2 = 55 aB: (a) Ω = 0; (b) Ω = 0.2 ω; (c) Ω = 0.5 ω. The fourth column shows the corresponding spin textures and the positions of the vortices[118]. 旋转频率对23Na旋量BEC的影响[118], 其中 , , κx = κy = κz = 1, , and a2 = 55 aB  (a) Ω = 0; (b) Ω = 0.2 ω; (c) Ω = 0.5 ω. 第四列显示了相应的自旋纹理和涡旋的位置
    The monopoles with the Mermin-Ho vortex: (a) Isosurface of particle densities; (b) segments of isosurface of particle densities (y ≤ 0). the position of the nodal line (Dirac string) is highlighted by the red arrow; (c) phase distributions in the z = 0 planes. the single vortex (mF = 0) and double vortex (mF = –1) have the same circulations, as highlighted by the red circles[125].具有Mermin-Ho涡旋的磁单极子[125] (a)等值面的粒子数密度; (b)粒子数密度等深线段(y ≤ 0), 节点线(Dirac线)的位置用红色箭头突出显示; (c) z=0平面上的位相分布. 单涡旋(mF = 0)和双涡旋(mF = –1)具有相同的环流, 由红圈突出显示
    Fig. 14. The monopoles with the Mermin-Ho vortex: (a) Isosurface of particle densities; (b) segments of isosurface of particle densities (y ≤ 0). the position of the nodal line (Dirac string) is highlighted by the red arrow; (c) phase distributions in the z = 0 planes. the single vortex (mF = 0) and double vortex (mF = –1) have the same circulations, as highlighted by the red circles[125]. 具有Mermin-Ho涡旋的磁单极子[125]  (a)等值面的粒子数密度; (b)粒子数密度等深线段(y ≤ 0), 节点线(Dirac线)的位置用红色箭头突出显示; (c) z=0平面上的位相分布. 单涡旋(mF = 0)和双涡旋(mF = –1)具有相同的环流, 由红圈突出显示
    πn缺陷孤子
    π0磁畴壁暗孤子
    π1涡旋非奇异磁畴壁
    π2磁单极二维skyrmions
    π3skyrmions, 扭结
    π4瞬子
    Table 1. Topological defect structures described by homotopy groups.
    Li Wang, Jing-Si Liu, Ji Li, Xiao-Lin Zhou, Xiang-Rong Chen, Chao-Fei Liu, Wu-Ming Liu. The research progress of topological properties in spinor Bose-Einstein condensates[J]. Acta Physica Sinica, 2020, 69(1): 010303-1
    Download Citation