• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0307002 (2022)
Yan Shi1、2、3, Zhuochen Xie1、*, and Huijie Liu1
Author Affiliations
  • 1Innovation Academy of Microsatellites of CAS, Shanghai 200120, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Information Science and Technology, ShanghaiTech University, Shanghai 200120, China
  • show less
    DOI: 10.3788/LOP202259.0307002 Cite this Article Set citation alerts
    Yan Shi, Zhuochen Xie, Huijie Liu. Modeling and Analysis of Fine-Grained Interference from International Mobile Communication System Terrestrial Base Stations to Low Earth Orbit Satellites[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0307002 Copy Citation Text show less
    References

    [1] Yu Q, Wang J C. 14th Five-Year Plan | Yu Quan, Academician of the Chinese Academy of Engineering: exploring the development of electromagnetic sensing LEO constellation system[N/OL]. China Electronics News. http://www.cena.com.cn/industrynews/20210106/110145.html

    [2] Jia M, Jing X Y, Liu X F et al. Spectrum allocation method for cognitive satellite network based on service priorities[J]. Journal on Communications, 40, 140-148(2019).

    [3] Hao C Y, Liu Y Y, Zhang Q. Recent research on NGSO satellite spectrum management[J]. China Radio, 43-47(2019).

    [4] Xu D J, Meng F L, Xie J D et al. Analysis of co-channel interference in satellite internet of things coexisting with terrestrial internet of things[J]. Video Engineering, 42, 42-46, 51(2018).

    [5] Ma L, Chen X T, Liu H J et al. Research on the application of cognitive radio technology in LEO communication satellite systems[C](2010).

    [6] Wang T, Qian Z J, Kang L et al. Coexistence interference analysis of 28 GHz IMT and fixed-satellite service systems[C], 1574-1578(2017).

    [7] Li B, Qian Z J, Liu S J et al. Interference assessment for the spectrum sharing between IMT-2020 and inter-satellite service[M]. Lau E T, Chai M K K, Chen Y, et al. Smart grid inspired future technologies. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, 203, 25-34(2017).

    [8] Tan H F, Wang T, Chen J J et al. Preliminary coexistence studies between IMT-2020 systems and inter-satellite service in 26 GHz[J]. MATEC Web of Conferences, 139, 00027(2017).

    [9] Kang K, Park J M, Kim H W et al. Analysis of interference and availability between satellite and ground components in an integrated mobile-satellite service system[J]. International Journal of Satellite Communications and Networking, 33, 351-366(2015).

    [10] Sun J, Huang P M, Yao Z S. Performance of satellite-to-ground laser communications under the influence of atmospheric turbulence and platform micro-vibration[J]. Laser & Optoelectronics Progress, 58, 0301003(2021).

    [11] Jia X, Li S H. Analysis on satellite-to-ground laser communications experiment and its link budget in foreign countries[J]. Spacecraft Engineering, 22, 120-126(2013).

    [12] Wan X F, Hao S Q, Zhang D et al. Link performance optimization for inter-satellite laser communications based on beckmann distribution[J]. Acta Optica Sinica, 39, 0206003(2019).

    [13] ITU-R. Modelling and simulation of IMT networks and systems for use in sharing and compatibility studies: recommendation ITU-R M.2101-0[R](2017).

    [14] ITU-R. Propagation data required for the evaluation of interference between stations in space and those on the surface of the Earth: recommendation ITU-R P.619-4[R](2019).

    [15] Guo Q, Wang Z Y, Gu X M[M]. Satellite communication system, 59(2010).

    [16] ITU-R. Prediction of clutter loss: recommendation ITU-R P.2108-0[R](2017).

    [17] ITU-R. Effects of building materials and structures on radiowave propagation above about 100 MHz: recommendation ITU-R P.2040-1[R](2015).

    [18] Li H, Xue B, Yang Y K. The technology of measuring and testing phased array antennas[J]. China Measurement Technology, 29, 10-12, 14(2003).

    [19] Kaushal H, Kaddoum G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 19, 57-96(2017).

    [20] ITU-R. Prediction methods required for the design of terrestrial free-space optical links: recommendation ITU-R P.1814-0[R](2007).

    [21] ITU-R. Propagation data required for the design of terrestrial free-space optical links: recommendation ITU-R P.1817-1[R](2012).

    [22] ITU-R. Characteristics of terrestrial IMT-Advanced systems for frequency sharing/interference analyses: recommendation ITU-R M.2292-0[R](2014).

    [23] ITU-R. Reference radiation patterns of omnidirectional, sectoral and other antennas for the fixed and mobile services for use in sharing studies in the frequency range from 400 MHz to about 70 GHz: recommendation ITU-R F.1336-5[R](2019).

    [24] Diao H X, Zhang Y P, Tang Y F et al. Simulation analysis of atmospheric attenuation effect on optical communication[J]. Laser & Infrared, 47, 1525-1530(2017).

    Yan Shi, Zhuochen Xie, Huijie Liu. Modeling and Analysis of Fine-Grained Interference from International Mobile Communication System Terrestrial Base Stations to Low Earth Orbit Satellites[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0307002
    Download Citation