• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056011 (2024)
Merve Gokce1,†, Eilam Smolinsky1, Louis Alexandre van der Elst1, Jillian Noblet2..., Creasy Clauser Huntsman2 and Alexander Gumennik1,*|Show fewer author(s)
Author Affiliations
  • 1Indiana University, Luddy School of Informatics, Computing, and Engineering, Fibers and Additive Manufacturing Enabled Systems Laboratory, Department of Intelligent Systems Engineering, Bloomington, Indiana, United States
  • 2Cook Medical Technologies, Bloomington, Indiana, United States
  • show less
    DOI: 10.1117/1.APN.3.5.056011 Cite this Article Set citation alerts
    Merve Gokce, Eilam Smolinsky, Louis Alexandre van der Elst, Jillian Noblet, Creasy Clauser Huntsman, Alexander Gumennik, "Multimodal fiber antenna for proximity and stress sensing," Adv. Photon. Nexus 3, 056011 (2024) Copy Citation Text show less
    References

    [1] J. Zhang et al. Advanced multi-material optoelectronic fibers: a review. J. Lightwave Technol., 39, 3836-3845(2021).

    [2] W. Yan et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today, 35, 168-194(2020).

    [3] W. Yan et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater., 31, 1802348(2019).

    [4] A. F. Abouraddy et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat. Mater., 6, 336-347(2007).

    [5] M. Chen et al. Elastic and stretchable functional fibers: a review of materials, fabrication methods, and applications. Adv. Fiber Mater., 3, 1-13(2021).

    [6] A. Leber et al. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron., 3, 316-326(2020).

    [7] W. Ryu et al. Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater., 5, 1712-1724(2023).

    [8] Y. He et al. Thermally drawn super-elastic multifunctional fiber sensor for human movement monitoring and joule heating. Adv. Mater. Technol., 8, 2202079(2023).

    [9] H. Banerjee et al. Soft multimaterial magnetic fibers and textiles. Adv. Mater., 35, 2212202(2023).

    [10] A. Gumennik et al. All-in-fiber chemical sensing. Adv. Mater., 24, 6005-6009(2012).

    [11] G. Loke et al. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater., 32, 1904911(2020).

    [12] Y. Qu et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater., 30, 1707251(2018).

    [13] C. Zhu et al. Advanced fiber materials for wearable electronics. Adv. Fiber Mater., 5, 12-35(2023).

    [14] C. Lu et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv., 3, e1600955(2017).

    [15] C. Faccini de Lima et al. Towards digital manufacturing of smart multimaterial fibers. Nanosc. Res. Lett., 14, 209(2019).

    [16] A. Gumennik et al. Very large-scale integration for fibers (VLSI-Fi)(2023).

    [17] S. Aoki. Biorender(2024).

    [18] L. A. van der Elst et al. Microstructured electroceutical fiber-device for inhibition of bacterial proliferation in wounds. Adv. Mater. Interfaces, 10, 2201854(2023).

    [19] L. van der Elst et al. 3D printing in fiber-device technology. Adv. Fiber Mater., 3, 59-75(2021).

    [20] V. N. Koraganji et al. Effects of 3D printed preform annealing on structural and optical properties of fibers, C6H_6(2020).

    [21] G. Tao, A. M. Stolyarov, A. F. Abouraddy. Multimaterial fibers. Int. J. Appl. Glass Sci., 3, 349-368(2012).

    [22] G. Goubau. Surface waves and their application to transmission lines. J. Appl. Phys., 21, 1119-1128(1950).

    [23] S. K. Oruganti et al. Experimental realization of Zenneck type wave-based non-radiative, non-coupled wireless power transmission. Sci. Rep., 10, 1-12(2020).

    [24] D. M. Pozar. Microwave Engineering(2012).

    [25] S. Littmarck, F. Saeidi. COMSOL Multiphysics 6.2(2024).

    [26] Y. A. Ilarionov et al. The fundamental electromagnetic wave of a single-wire line in a weakly absorbing medium. J. Commun. Technol. Electron., 52, 140-146(2007).

    [27] L. A. van der Elst et al. Rapid fabrication of sterile medical nasopharyngeal swabs by stereolithography for widespread testing in a pandemic. Adv. Eng. Mater., 22, 2000759(2020).

    [28] L. Yu et al. Flexible multi‐material fibers for distributed pressure and temperature sensing. Adv. Funct. Mater., 30, 1908915(2020).

    [29] J. P. Moore et al. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt. Express, 20, 2967-2973(2012).

    [30] Y. Li et al. Smart glove integrated with tunable MWNTs/PDMS fibers made of a one-step extrusion method for finger dexterity, gesture, and temperature recognition. ACS Appl. Mater. Interfaces, 12, 23764-23773(2020).

    [31] T. Bao, J. Wang, Y. Yao. A fiber optic sensor for detecting and monitoring cracks in concrete structures. Sci. China Technol. Sci., 53, 3045-3050(2010).

    [32] C. Faccini de Lima et al. Multimaterial fiber as a physical simulator of a capillary instability. Nat. Commun., 14, 1-17(2023).

    [33] A. Gumennik et al. Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities. Nat. Commun., 4, 2216(2013).

    [34] A. Gumennik et al. Confined in-fiber solidification and structural control of silicon and silicon−germanium microparticles. PNAS, 114, 7240-7245(2017).

    [35] C. Faccini de Lima et al. Creating fiber-embedded photonic circuitry by liquid-phase structuring of multi-material cores. Proc. SPIE, 12433, 1243307(2023).

    [36] L. Wei et al. Optoelectronic fibers via selective amplification of in-fiber capillary instabilities. Adv. Mater., 29, 1603033(2017).

    [37] L. Pan et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun., 5, 1-8(2014).

    [38] Y. Richter, E. S. Tammam, S. E. Mandel. Method of detecting portal and/or hepatic pressure and a portal hypertension monitoring system(2013).

    [39] P. Song et al. Recent progress of miniature MEMS pressure sensors. Micromachines, 11, 56(2020).

    [40] J. Lee et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater., 27, 2433-2439(2015).

    [41] K. Sui et al. In vivo brain temperature mapping using polymer optical fiber Bragg grating sensors. Opt. Lett., 48, 4225-4228(2023).

    [42] Z. Jin et al. Silicon photonic integrated interrogator for fiber-optic distributed acoustic sensing. Photonics Res., 12, 465-473(2024).

    [43] P. Lu et al. Distributed optical fiber sensing: review and perspective. Appl. Phys. Rev., 6, 41302(2019).

    [44] F. A. A. Nugroho et al. Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection. Nat. Commun., 13, 1-10(2022).

    [45] S. N. Khonina et al. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express, 29, 16584-16594(2021).

    [46] R. S. El Shamy, D. Khalil, M. A. Swillam. Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer. Sci. Rep., 10, 1-9(2020).

    [47] A. Gillooly. Fiber sensing: medical fiber-optic sensors offer haptics, 3D shape sensing, and pressure sensing – Laser Focus World(2024).

    [48] M. Gokce et al. Multimodal fiber antenna for proximity and stress sensing: source data.

    Merve Gokce, Eilam Smolinsky, Louis Alexandre van der Elst, Jillian Noblet, Creasy Clauser Huntsman, Alexander Gumennik, "Multimodal fiber antenna for proximity and stress sensing," Adv. Photon. Nexus 3, 056011 (2024)
    Download Citation