• Advanced Photonics Nexus
  • Vol. 3, Issue 2, 026008 (2024)
Yuxi Pang1、2, Qiang Ji1、2, Shaonian Ma1、2, Xian Zhao1、2, Zengguang Qin2、3, Zhaojun Liu2、3, Ping Lu4, Xiaoyi Bao5, and Yanping Xu1、2、*
Author Affiliations
  • 1Shandong University, Center for Optics Research and Engineering, Qingdao, China
  • 2Shandong University, Key Laboratory of Laser and Infrared System of the Ministry of Education, Qingdao, China
  • 3Shandong University, School of Information Science and Engineering, Qingdao, China
  • 4National Research Council Canada, Ottawa, Canada
  • 5University of Ottawa, Physics Department, Ottawa, Canada
  • show less
    DOI: 10.1117/1.APN.3.2.026008 Cite this Article Set citation alerts
    Yuxi Pang, Qiang Ji, Shaonian Ma, Xian Zhao, Zengguang Qin, Zhaojun Liu, Ping Lu, Xiaoyi Bao, Yanping Xu. Unveiling optical rogue wave behavior with temporally localized structures in Brillouin random fiber laser comb[J]. Advanced Photonics Nexus, 2024, 3(2): 026008 Copy Citation Text show less
    References

    [1] A. Chabchoub, N. P. Hoffmann, N. Akhmediev. Rogue wave observation in a water wave tank. Phys. Rev. Lett., 106, 204502(2011).

    [2] A. R. Osborne, M. Onorato, M. Serio. The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys. Lett. A, 275, 386-393(2000).

    [3] D. R. Solli et al. Optical rogue waves. Nature, 450, 1054-1057(2007).

    [4] X. Wei, Z. He, W. Zhang. Cascaded supercontinuum generation and rogue wave harnessing. Chaos Solitons Fractals, 165, 112858(2022).

    [5] K. Hammani et al. Optical rogue-wave-like extreme value fluctuations in fiber Raman amplifiers. Opt. Express, 16, 16467(2008).

    [6] C. Bonatto. Deterministic optical rogue waves. Phys. Rev. Lett., 107, 053901(2011).

    [7] M. G. Kovalsky, A. A. Hnilo, J. R. Tredicce. Extreme events in the Ti:sapphire laser. Opt. Lett., 36, 4449(2011).

    [8] C. Bonazzola et al. Optical rogue waves in an all-solid-state laser with a saturable absorber: importance of the spatial effects. J. Opt., 15, 064004(2013).

    [9] S. Coulibaly et al. Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser. Phys. Rev. A, 95, 023816(2017).

    [10] R. Uppu, S. Mujumdar. Physical manifestation of extreme events in random lasers. Opt. Lett., 40, 5046(2015).

    [11] K. Hammani, A. Picozzi, C. Finot. Extreme statistics in Raman fiber amplifiers: from analytical description to experiments. Opt. Commun., 284, 2594-2603(2011).

    [12] D. Majus et al. Spatiotemporal rogue events in femtosecond filamentation. Phys. Rev. A, 83, 025802(2011).

    [13] S. Randoux, P. Suret. Experimental evidence of extreme value statistics in Raman fiber lasers. Opt. Lett., 37, 500(2012).

    [14] M. Luo et al. Dissipative rogue waves generated by multi-soliton explosions in an ultrafast fiber laser. Opt. Express, 30, 22143(2022).

    [15] J. Xu et al. Optical rogue wave in random fiber laser. Photonics Res., 8, 1(2020).

    [16] R. Ma et al. 20 watt-level single transverse mode narrow linewidth and tunable random fiber laser at 1.5  μm band. Opt. Express, 30, 28795-28804(2022). https://doi.org/10.1364/OE.461134

    [17] L. Zhang et al. Sub-kHz high-order mode Brillouin random fiber laser based on long-period fiber grating and distributed Rayleigh scattering in a half-open linear cavity. Opt. Express, 31, 15484-15494(2023).

    [18] J. Ye et al. Revealing the dynamics of intensity fluctuation transfer in random Raman fiber laser. Photonics Res., 10, 618-627(2022).

    [19] H. Wu et al. Widely tunable continuous-wave visible and mid-infrared light generation based on a dual-wavelength switchable and tunable random Raman fiber laser. Photonics Res., 11, 808-816(2023).

    [20] P. Tovar, G. Temporão, J. P. von der Weid. Longitudinal mode dynamics in SOA-based random feedback fiber lasers. Opt. Express, 27, 31001-31012(2019).

    [21] H. Wu et al. 1.5  μm low threshold, high efficiency random fiber laser with hybrid Erbium–Raman gain. J. Lightwave Technol., 36, 844-849(2018). https://doi.org/10.1109/JLT.2017.2712739

    [22] H. Zhang et al. Quasi-kilowatt random fiber laser. Opt. Lett., 44, 2613-2616(2019).

    [23] Y. Zhang et al. Tunable random Raman fiber laser at 1.7  μm region with high spectral purity. Opt. Express, 27, 28800-28807(2019). https://doi.org/10.1364/OE.27.028800

    [24] M. Pang, X. Bao, L. Chen. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Opt. Lett., 38, 1866(2013).

    [25] Y. Pang et al. Single-longitudinal-mode short-cavity Brillouin random fiber laser via frequency auto-tracking with unpumped-EDF Sagnac loop. Infrared Phys. Technol., 127, 104461(2022).

    [26] L. Zhang et al. Linearly polarized low-noise Brillouin random fiber laser. Opt. Lett., 42, 739(2017).

    [27] H. Wang et al. Stabilizing Brillouin random laser with photon localization by feedback of distributed random fiber grating array. Opt. Express, 30, 20712(2022).

    [28] Y. Xu et al. Random Fabry–Perot resonator-based sub-kHz Brillouin fiber laser to improve spectral resolution in linewidth measurement. Opt. Lett., 40, 1920-1923(2015).

    [29] X. Feng et al. Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser. IEEE Photonics Technol. Lett., 19, 1334-1336(2007).

    [30] D. Xiang et al. Truly random bit generation based on a novel random Brillouin fiber laser. Opt. Lett., 40, 5415(2015).

    [31] H. Chen et al. Advances in random fiber lasers and their sensing application. Sensors, 20, 6122(2020).

    [32] H. Wu et al. Temporal ghost imaging with random fiber lasers. Opt. Express, 28, 9957(2020).

    [33] S. Gao et al. High-speed random bit generation via Brillouin random fiber laser with non-uniform fibers. IEEE Photonics Technol. Lett., 29, 1352-1355(2017).

    [34] L. Zhang et al. Multiwavelength coherent Brillouin random fiber laser with ultrahigh optical signal-to-noise ratio. IEEE J. Sel. Top. Quantum Electron., 24, 1-8(2018).

    [35] L. Zhang et al. Multi-wavelength Brillouin random fiber laser via distributed feedback from a random fiber grating. J. Lightwave Technol., 36, 2122-2128(2018).

    [36] L. Zhang et al. Linearly polarized multi-wavelength fiber laser comb via Brillouin random lasing oscillation. IEEE Photonics Technol. Lett., 30, 1005-1008(2018).

    [37] Y. Pang et al. Frequency comb generation based on Brillouin random lasing oscillation and four-wave mixing assisted with nonlinear optical loop mirror. Photonics, 10, 296(2023).

    [38] L. Talaverano et al. Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability. J. Lightwave Technol., 19, 553-558(2001).

    [39] S. Diaz, D. Leandro, M. Lopez-Amo. Stable multiwavelength Erbium fiber ring laser with optical feedback for remote sensing. J. Lightwave Technol., 33, 2439-2444(2015).

    [40] X. Wang et al. Temporal optical rogue waves in high power short-cavity Yb-doped random fiber laser. Opt. Laser Technol., 149, 107797(2022).

    [41] R. W. Boyd, K. Rzaewski, P. Narum. Noise initiation of stimulated Brillouin scattering. Phys. Rev. A, 42, 5514-5521(1990).

    [42] A. Yeniay, J.-M. Delavaux, J. Toulouse. Spontaneous and stimulated Brillouin scattering gain spectra in optical fibers. J. Lightwave Technol., 20, 1425-1432(2002).

    [43] X. M. Liu. Broad and tunable multiwavelength fiber laser at the assistance of modulation-instability-assisted four-wave mixing. Laser Phys., 20, 842-846(2010).

    [44] G. A. Cranch, G. A. Miller. Fundamental frequency noise properties of extended cavity erbium fiber lasers. Opt. Lett., 36, 906(2011).

    [45] S. Foster. Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission. Phys. Rev. A, 78, 013820(2008).

    [46] B. Saxena. Noise characteristics for random fiber lasers with Rayleigh distributed feedback(2014).

    [47] P.-H. Hanzard et al. Brillouin scattering-induced rogue waves in self-pulsing fiber lasers. Sci. Rep., 7, 45868(2017).

    [48] P. L. Christiansen, G. P. Agrawal, M. P. Sørensen, A. C. Scott. Nonlinear fiber optics. Nonlinear Science at the Dawn of the 21st Century, 195-211(2000).

    Yuxi Pang, Qiang Ji, Shaonian Ma, Xian Zhao, Zengguang Qin, Zhaojun Liu, Ping Lu, Xiaoyi Bao, Yanping Xu. Unveiling optical rogue wave behavior with temporally localized structures in Brillouin random fiber laser comb[J]. Advanced Photonics Nexus, 2024, 3(2): 026008
    Download Citation