• Opto-Electronic Engineering
  • Vol. 46, Issue 8, 180328 (2019)
Liu Xin1、2、3、*, Li Xinyang1、2, and Du Rui1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180328 Cite this Article
    Liu Xin, Li Xinyang, Du Rui. Hysteresis nonlinear modeling and inverse compensation of piezoelectric actuators[J]. Opto-Electronic Engineering, 2019, 46(8): 180328 Copy Citation Text show less
    References

    [1] Jiang W, Li H, Liu C, et al. A 37-element adaptive optics system with H-S wavefront sensor[C]//Proceedings of the 16th Congress of the International Commission for Optics, 1993: 127–134.

    [2] Parenti R R, Sasiela R J. Laser-guide-star systems for astronomical applications[J]. Journal of the Optical Society of America A, 1994, 11(1): 288–309.

    [3] Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489.

    [4] Tyson R K. Principles of Adaptive Optics[M]. Boston: Academic Press, 1991.

    [5] Huang L H, Fan M W, Zhou R, et al. System identification and control for large aperture fast-steering mirror driven by PZT[J]. Opto-Electronic Engineering, 2018, 45(3): 170704.

    [6] Wang W M, Wang Q. Development and characterization of a 140-element MEMS deformable mirror[J]. Opto-Electronic Engineering, 2018, 45(3): 170698.

    [7] Yan Z J, Li X Y. Neural network prediction algorithm for control voltage of deformable mirror in adaptive optical system[J]. Acta Optica Sinica, 2010, 30(4): 911–916.

    [8] Wang C C, Hu L F, He B, et al. Hysteresis compensation method of piezoelectric steering mirror based on neural network[J]. Chinese Journal of Lasers, 2013, 40(11): 1113001.

    [9] Moheimani S O R. Accurate and fast nanopositioning with piezoelectric tube scanners: Emerging trends and future challenges[J]. Review of Scientific Instruments, 2008, 79(5): 1–11.

    [10] Mayergoyz I D. Mathematical Models of Hysteresis[M]. New York: Springer-Verlag, 1991.

    [11] Hu H, Mrad R B. On the classical Preisach model for hysteresis in piezoceramic actuators[J]. Mechatronics, 2003, 13(2): 85–94.

    [12] Banks H T, Kurdila A J. Hysteretic control influence operators representing smart material actuators: identification and approximation[C]//Proceedings of the 35th IEEE Conference on Decision and Control, 1996: 3711–3716.

    [13] Su C Y, Wang Q Q, Chen X K, et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(12): 2069–2074.

    [14] Liu X D, Xiu C B, Li L, et al. Hysteresis modeling using neural networks[J]. Piezoelectrics & Acoustooptics, 2007, 29(1): 106–108.

    [15] Qian F, Xu S A, Liu Y R, et al. Neural network modeling based on polynomial fitting for hysteresis behavior of piezoelectric actuator[J]. Computer Simulation, 2015, 32(1): 361–366.

    [16] Zhao X L. Modeling and control for hysteresis systems based on hysteretic operator[D]. Shanghai: Shanghai Jiao Tong University, 2006.

    [17] Ma L W, Tan Y H, Zou T. Modeling hysteresis using expanding-space method[J]. Journal of System Simulation, 2008, 20(20): 5635–5637, 5641.

    [18] Luo Y, Liu Y J, Zhu G P, et al. Bayesian-regularization neural network for corporation credit rating[J]. Computer Simulation, 2010, 27(11): 303–306.

    [19] Wang G. Study on correction of nonlinearity of piezoelectric actuator[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2013.

    Liu Xin, Li Xinyang, Du Rui. Hysteresis nonlinear modeling and inverse compensation of piezoelectric actuators[J]. Opto-Electronic Engineering, 2019, 46(8): 180328
    Download Citation