• Laser & Optoelectronics Progress
  • Vol. 62, Issue 11, 1127005 (2025)
Yuhang Li1,2, Xiulai Xu3,4,5,**, and Chenjiang Qian1,2,*
Author Affiliations
  • 1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3School of Physics, Peking University, Beijing 100871, China
  • 4Yangtze Delta Institute of Optoelectronics, Peking University, Nantong 226010, Jiangsu , China
  • 5Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, Shanxi , China
  • show less
    DOI: 10.3788/LOP250712 Cite this Article Set citation alerts
    Yuhang Li, Xiulai Xu, Chenjiang Qian. 2D Material-Micro/Nano-Photonic Cavity Coupling Quantum Systems and Their Control in Multiple Degrees of Freedom (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127005 Copy Citation Text show less
    References

    [1] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [2] Duan X D, Wang C, Pan A L et al. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges[J]. Chemical Society Reviews, 44, 8859-8876(2015).

    [3] Manzeli S, Ovchinnikov D, Pasquier D et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2, 17033(2017).

    [4] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides[J]. Nature Photonics, 10, 216-226(2016).

    [5] Golberg D, Bando Y, Huang Y et al. Boron nitride nanotubes and nanosheets[J]. ACS Nano, 4, 2979-2993(2010).

    [6] Caldwell J D, Aharonovich I, Cassabois G et al. Photonics with hexagonal boron nitride[J]. Nature Reviews Materials, 4, 552-567(2019).

    [7] Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 363, eaav4450(2019).

    [8] Burch K S, Mandrus D, Park J G. Magnetism in two-dimensional van der Waals materials[J]. Nature, 563, 47-52(2018).

    [9] Gibertini M, Koperski M, Morpurgo A F et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology, 14, 408-419(2019).

    [10] Novoselov K S, Mishchenko A, Carvalho A et al. 2D materials and van der Waals heterostructures[J]. Science, 353, aac9439(2016).

    [11] Chaves A, Azadani J G, Alsalman H et al. Bandgap engineering of two-dimensional semiconductor materials[J]. NPJ 2D Materials and Applications, 4, 29(2020).

    [12] Geim A K, Grigorieva I V. Van der Waals heterostructures[J]. Nature, 499, 419-425(2013).

    [13] Schaibley J R, Yu H Y, Clark G et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 1, 16055(2016).

    [14] Wang Y Q, Deng L J, Wei Q L et al. Spin-valley locking effect in defect states of monolayer MoS2[J]. Nano Letters, 20, 2129-2136(2020).

    [15] Deng Y J, Yu Y J, Shi M Z et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4[J]. Science, 367, 895-900(2020).

    [16] Chang C Z, Liu C X, MacDonald A H. Colloquium: quantum anomalous Hall effect[J]. Reviews of Modern Physics, 95, 011002(2023).

    [17] Kim G, Song S, Jariwala D. Spatially controlled two-dimensional quantum heterostructures[J]. Materials Research Letters, 11, 327-346(2023).

    [18] Gérard J M, Barrier D, Marzin J Y et al. Quantum boxes as active probes for photonic microstructures: the pillar microcavity case[J]. Applied Physics Letters, 69, 449-451(1996).

    [19] Armani D K, Kippenberg T J, Spillane S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).

    [20] Wang S J, Chen K, Dong S F et al. Tunable topological polaritons by dispersion tailoring of an active metasurface[J]. Advanced Photonics, 6, 046005(2024).

    [21] Khankhoje U K, Kim S H, Richards B C et al. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics[J]. Nanotechnology, 21, 065202(2010).

    [22] Yang B, Shen X P, Shi L W et al. Nonuniform pseudo-magnetic fields in photonic crystals[J]. Advanced Photonics Nexus, 3, 026011(2024).

    [23] Brossard F S F, Xu X L, Williams D A et al. Strongly coupled single quantum dot in a photonic crystal waveguide cavity[J]. Applied Physics Letters, 97, 111101(2010).

    [24] Vahala K J. Optical microcavities[J]. Nature, 424, 839-846(2003).

    [25] Kimble H J. The quantum internet[J]. Nature, 453, 1023-1030(2008).

    [26] Haroche S, Brune M, Raimond J M. From cavity to circuit quantum electrodynamics[J]. Nature Physics, 16, 243-246(2020).

    [27] Xie P, Wu Y Y, Li Y H et al. Strong light-matter interactions in hybrid nanostructures with transition metal dichalcogenides[J]. Journal of Optics, 24, 093001(2022).

    [28] Smolka S, Wuester W, Haupt F et al. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas[J]. Science, 346, 332-335(2014).

    [29] Torres K, Kuc A, Maschio L et al. Probing defects and spin-phonon coupling in CrSBr via resonant Raman scattering[J]. Advanced Functional Materials, 33, 2211366(2023).

    [30] Chen J L, Lin X, Chen M Y et al. A perspective of twisted photonic structures[J]. Applied Physics Letters, 119, 240501(2021).

    [31] Hu G W, Ou Q D, Si G Y et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 582, 209-213(2020).

    [32] Chen M Y, Lin X, Dinh T H et al. Configurable phonon polaritons in twisted α-MoO3[J]. Nature Materials, 19, 1307-1311(2020).

    [33] Li F, Koniakhin S V, Nalitov A V et al. Simultaneous creation of multiple vortex-antivortex pairs in momentum space in photonic lattices[J]. Advanced Photonics, 5, 066007(2023).

    [34] Wang H F, Gupta S K, Zhu X Y et al. Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling[J]. Physical Review B, 98, 214101(2018).

    [35] Hsu C W, Zhen B, Stone A D et al. Bound states in the continuum[J]. Nature Reviews Materials, 1, 16048(2016).

    [36] Melik-Gaykazyan E, Koshelev K, Choi J H et al. From Fano to quasi-BIC resonances in individual dielectric nanoantennas[J]. Nano Letters, 21, 1765-1771(2021).

    [37] Wang J J, Li P S, Zhao X Q et al. Optical bound states in the continuum in periodic structures: mechanisms, effects, and applications[J]. Photonics Insights, 3, R01(2024).

    [38] Wu Z L, Chen X D, Wang M S et al. High-performance ultrathin active chiral metamaterials[J]. ACS Nano, 12, 5030-5041(2018).

    [39] Wu Z L, Liu Y R, Hill E H et al. Chiral metamaterialsvia Moiré stacking[J]. Nanoscale, 10, 18096-18112(2018).

    [40] Wu Z L, Zheng Y B. Moiré chiral metamaterials[J]. Advanced Optical Materials, 5, 1700034(2017).

    [41] Wu Y Y, Xie P, Ding Q et al. Magnetic plasmons in plasmonic nanostructures: an overview[J]. Journal of Applied Physics, 133, 030902(2023).

    [42] Törmä P, Barnes W L. Strong coupling between surface plasmon polaritons and emitters: a review[J]. Reports on Progress in Physics, 78, 013901(2015).

    [43] Baranov D G, Wersäll M, Cuadra J et al. Novel nanostructures and materials for strong light-matter interactions[J]. ACS Photonics, 5, 24-42(2018).

    [44] Vasa P, Lienau C. Strong light-matter interaction in quantum emitter/metal hybrid nanostructures[J]. ACS Photonics, 5, 2-23(2018).

    [45] Shen S Y, Wu Y Y, Li Y H et al. Tuning magnetic Mie-exciton interaction from the intermediate to strong coupling regime in a WSe2 monolayer coupled with dielectric-metal nanoresonators[J]. Physical Review B, 105, 155403(2022).

    [46] Mueller T, Malic E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors[J]. NPJ 2D Materials and Applications, 2, 29(2018).

    [47] Khitrova G, Gibbs H M, Kira M et al. Vacuum Rabi splitting in semiconductors[J]. Nature Physics, 2, 81-90(2006).

    [48] Kéna-Cohen S, Forrest S R. Room-temperature polariton lasing in an organic single-crystal microcavity[J]. Nature Photonics, 4, 371-375(2010).

    [49] Kasprzak J, Richard M, Kundermann S et al. Bose-Einstein condensation of exciton polaritons[J]. Nature, 443, 409-414(2006).

    [50] Luo Y, Zhao J X, Fieramosca A et al. Strong light-matter coupling in van der Waals materials[J]. Light: Science & Applications, 13, 203(2024).

    [51] Qian C J, Villafañe V, Schalk M et al. Unveiling the zero-phonon line of the boron vacancy center by cavity-enhanced emission[J]. Nano Letters, 22, 5137-5142(2022).

    [52] Qian C J, Villafañe V, Soubelet P et al. Nonlocal exciton-photon interactions in hybrid high-Q beam nanocavities with encapsulated MoS2 monolayers[J]. Physical Review Letters, 128, 237403(2022).

    [53] Chen Y J, Cain J D, Stanev T K et al. Valley-polarized exciton-polaritons in a monolayer semiconductor[J]. Nature Photonics, 11, 431-435(2017).

    [54] Qian C J, Troue M, Figueiredo J et al. Lasing of moiré trapped MoSe2/WSe2 interlayer excitons coupled to a nanocavity[J]. Science Advances, 10, eadk6359(2024).

    [55] Xu X L, Williams D A, Cleaver J R A. Electrically pumped single-photon sources in lateral p-i-n junctions[J]. Applied Physics Letters, 85, 3238-3240(2004).

    [56] Xu X L, Toft I, Phillips R T et al. “Plug and play” single-photon sources[J]. Applied Physics Letters, 90, 061103(2007).

    [57] Xu X L, Brossard F, Hammura K et al. Plug and play”single photons at 1.3 μm approaching gigahertz operation[J]. Applied Physics Letters, 93, 021124(2008).

    [58] Antonius G, Louie S G. Theory of exciton-phonon coupling[J]. Physical Review B, 105, 085111(2022).

    [59] Liu G B, Shan W Y, Yao Y G et al. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides[J]. Physical Review B, 88, 085433(2013).

    [60] Yao W, Xiao D, Niu Q. Valley-dependent optoelectronics from inversion symmetry breaking[J]. Physical Review B, 77, 235406(2008).

    [61] Lai J M, Sun Y J, Tan Q H et al. Laser cooling of a lattice vibration in van der Waals semiconductor[J]. Nano Letters, 22, 7129-7135(2022).

    [62] Rosser D, Fryett T, Ryou A et al. Exciton-phonon interactions in nanocavity-integrated monolayer transition metal dichalcogenides[J]. NPJ 2D Materials and Applications, 4, 20(2020).

    [63] Qian C J, Villafañe V, Petrić M M et al. Coupling of MoS2 excitons with lattice phonons and cavity vibrational phonons in hybrid nanobeam cavities[J]. Physical Review Letters, 130, 126901(2023).

    [64] Peierls R. On Ising’s model of ferromagnetism[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 32, 477-481(1936).

    [65] Huang B, Clark G, Navarro-Moratalla E et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 546, 270-273(2017).

    [66] Gong C, Li L, Li Z L et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 546, 265-269(2017).

    [67] Bae Y J, Wang J, Scheie A et al. Exciton-coupled coherent magnons in a 2D semiconductor[J]. Nature, 609, 282-286(2022).

    [68] Ziebel M E, Feuer M L et al. CrSBr: an air-stable, two-dimensional magnetic semiconductor[J]. Nano Letters, 24, 4319-4329(2024).

    [69] Diederich G M, Cenker J, Ren Y F et al. Tunable interaction between excitons and hybridized magnons in a layered semiconductor[J]. Nature Nanotechnology, 18, 23-28(2023).

    [70] Lu X B, Yang L. Stark effect of doped two-dimensional transition metal dichalcogenides[J]. Applied Physics Letters, 111, 193104(2017).

    [71] Tang Y H, Gu J, Liu S et al. Tuning layer-hybridized Moiré excitons by the quantum-confined Stark effect[J]. Nature Nanotechnology, 16, 52-57(2021).

    [72] He M H, Rivera P, Van Tuan D et al. Valley phonons and exciton complexes in a monolayer semiconductor[J]. Nature Communications, 11, 618(2020).

    [73] Huang Z H, Bai Y F, Zhao Y C et al. Observation of phonon Stark effect[J]. Nature Communications, 15, 4586(2024).

    [74] Stier A V, McCreary K M, Jonker B T et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla[J]. Nature Communications, 7, 10643(2016).

    [75] Wilson N P, Lee K, Cenker J et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor[J]. Nature Materials, 20, 1657-1662(2021).

    [76] Akahane Y, Asano T, Song B S et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 425, 944-947(2003).

    [77] Wu S F, Buckley S, Schaibley J R et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds[J]. Nature, 520, 69-72(2015).

    [78] Liu Y D, Fang H L, Rasmita A et al. Room temperature nanocavity laser with interlayer excitons in 2D heterostructures[J]. Science Advances, 5, eaav4506(2019).

    [79] Qian C J, Villafañe V, Soubelet P et al. Probing dark excitons in monolayer MoS2 by nonlinear two-photon spectroscopy[J]. Physical Review Letters, 133, 086902(2024).

    [80] Liao K, Hu X Y, Gan T Y et al. Photonic molecule quantum optics[J]. Advances in Optics and Photonics, 12, 60(2020).

    [81] Chalcraft A R A, Lam S, Jones B D et al. Mode structure of coupled L3 photonic crystal cavities[J]. Optics Express, 19, 5670-5675(2011).

    [82] Ji P R, Qian C J, Finley J J et al. Thickness insensitive nanocavities for 2D heterostructures using photonic molecules[J]. Nanophotonics, 12, 3501-3510(2023).

    Yuhang Li, Xiulai Xu, Chenjiang Qian. 2D Material-Micro/Nano-Photonic Cavity Coupling Quantum Systems and Their Control in Multiple Degrees of Freedom (Invited)[J]. Laser & Optoelectronics Progress, 2025, 62(11): 1127005
    Download Citation