• Laser & Optoelectronics Progress
  • Vol. 50, Issue 11, 110003 (2013)
Wei Zhaolin*, Hu Shuling, Wang Xinlong, and Shao Hongfeng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop50.110003 Cite this Article Set citation alerts
    Wei Zhaolin, Hu Shuling, Wang Xinlong, Shao Hongfeng. Development of Research on Phase Modulation to Intensity Modulation Conversion[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110003 Copy Citation Text show less
    References

    [1] J Seed. Microwave photonics[J]. IEEE Trans Microwave Theory Technol, 2002, 50(3): 877-887.

    [2] J P Yao, Z Fei, Q Wang. Photonic generation of ultrawideband signals[J]. J Lightwave Technol, 2007, 25(11): 3219-3235.

    [3] A R Chrapyvy, R W Tkach, L L Buhl, et al.. Phase modulation to amplitude modulation conversion of CW laser light in optical fibers[J]. Electron Lett, 1986, 22(8): 409-410.

    [4] N G Walker, D Wake, I C Smith. Efficent millimeter-wave signal generation through FM-IM conversion in dispersive optical fiber links[J]. Electron Lett, 1992, 28(21): 2027-2028.

    [5] J Marti, F Ramos, V Polo, et al.. Millimeter-wave generation and harmonic upconversion through PM-IM conversion in chirped fiber gatings[J]. Electron Lett, 1999, 35(15): 1265-1266.

    [6] W Li, N H Zhu, L X Wang, et al.. Broadband phase-to-intensity modulation conversion for microwave photonics processing using Brillouin-assisted carrier phase shift[J]. J Lightw Technol, 2011, 29(24): 3616-3621.

    [7] X S Yao. Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification[J]. IEEE Photon Technol Lett, 1998, 10(2): 264-266.

    [8] F Zeng, J P Yao. Frequency domain analysis of fiber Bragg grating based phase modulation to intensity modulation conversion[C]. SPIE, 2005, 5971: 594-601.

    [9] J Capmany, B Ortega, D Pastor. A tutorial on microwave photonic filters[J]. J Lightw Technol, 2006, 24(1): 201-209.

    [10] F Zeng, J Yao. Investigation of phase-modulator-based all-optical bandpass microwave filter[J]. J Lightwave Technol, 2005, 23(4): 1721-1728.

    [11] S Sales, J Capmany, J Martí, et al.. Experiment demonstration of fiber-optic delay line filters with negative coefficients[J]. Electron Lett, 1995, 31(13): 1095-1096.

    [12] T Yost, P Herczfeld, A Rosen et al.. Hybrid transversal filter utilizing MMIC and optical fiber delay lines[J]. IEEE Microw Guided Wave Lett, 1995, 5(9): 287-289.

    [13] F Coppinger, S Yegnanarayanan, P D Trinh, et al.. All-optical RF filter using amplitude inversion in a SOA[J]. IEEE Trans Microw Theory Tech, 1997, 45(8): 1473-1477.

    [14] J Mora, B Ortege, M V Andrés, et al.. Tunable all-optical negative multi-tap microwave filters based on uniform fiber Bragg gratings[J]. Opt Lett, 2003, 28(15): 1308-1310.

    [15] J Capmany, D Pastor, A Martinez, et al.. Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator[J]. Opt Lett, 2003, 28(16): 1415-1417.

    [16] B Vidal, J L Corral, J Marti. All-optical WDM microwave filter With negative coefficients[J]. IEEE Photon Technol Lett, 2005, 17(3): 666-668.

    [17] F Zeng, J Wang, J P Yao. All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings[J]. Opt Lett, 2005, 30(17): 2203-2205.

    [18] J Wang, F Zeng, J P Yao. All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion[J]. IEEE Photon Technol Lett, 2005,17(10): 2176-2178.

    [19] J Mora, J Capmany, A Loayssa, et al.. Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulator and single sideband selection[J]. IEEE Photon Technol Lett, 2006, 18(18): 1943-1944.

    [20] T Y Kim, C K Oh, S J Kim, et al.. Tunable photonic microwave notch filter with negative coefficient based on polarization modulation[J]. IEEE Photon Technol Lett, 2007, 19(12): 907-909.

    [21] T Tanemura, Y Takushima, K Kikuchi. Narrowband optical filter with a variable transmission spectrum using stimulated Brillouin scattering in optical fiber[J]. Opt Lett, 2002, 27(17): 1552-1554.

    [22] B Vidal, M A Piqueras, J Marti. Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering[J]. Opt Lett, 2007, 32(1): 23-25.

    [23] Zhu Hailing, Pan Wei, Chen Jixin, et al.. Frequency multiplied microwave signal generation based on single passband microwave photonic filtering[J]. Chinese J Lasers, 2013, 40(1): 0105003.

    [24] Han Bingchen, Yu Jinlong, Wang Wenrui, et al.. Experimental study of continously tunable photonic microwave frequency multipliaction based on distributed feedback injection locking[J]. Chinese J Lasers, 2012, 39(12): 1205004.

    [25] Q Wang, F Zeng, S Blais, et al.. Optical UWB monocycle pulse generation based on cross-gain modulation in semiconductor optical amplifier[J]. Opt Lett, 2006, 31(21): 3083-3085.

    [26] J Dong, X Zhang, J Xu, et al.. Ultrawideband monocycle generation using cross-gain modulation in semiconductor optical amplifier[J]. Opt Lett, 2007, 32(10): 1223-1225.

    [27] J Dong, X Zhang, J Xu, et al.. All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier[J]. Opt Lett, 2007, 32(15): 2158-2160.

    [28] M Muriel, J Azana, A Carballar. Real-time Fourier transformer based on fiber gratings[J]. Opt Lett, 1999, 24(1): 1-3.

    [29] J Chou, Y Han, Babram Jalali. Adaptive RF-photonic arbitrary waveform generator[J]. IEEE Photon Technol Lett, 2003, 15(4): 581-583.

    [30] L S Lin, J D Mekinney, A M Weiner. Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication[J]. IEEE Microw Wireless Compon Lett, 2005, 15(4): 226-228.

    [31] C Wang, F Zeng, J P Yao. All-fiber ultrawideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion[J]. IEEE Photon Technol Lett, 2007, 19(3): 137-139.

    [32] M Abtahi, M Mirshafiei, J Magne, et al.. Ultra-widehand waveform generator based on optical pulse-shaping and FBG tuning[J]. IEEE Photon Techol Lett, 2008, 20(2): 135-137.

    [33] Guo Jingzhong, Yu Jinlong, Liu Yi, et al.. Ultrawideband signal generation based on injection locking of Fabry-Perot laser diode[J]. Chinese J Lasers, 2012, 39(6): 0605006.

    [34] F Zeng, J P Yao. An approach to ultrawideband pulse generation and distribution over optical fiber[J]. IEEE Photon Techol Lett, 2006, 18(7): 823-825.

    [35] F Zeng, J P Yao. Ultrawideband signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator[J]. IEEE Photon Techol Lett, 2006, 18(19): 2062-2064.

    [36] G Qi, J P Yao, J Seregelyi, et al.. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. J Lightwave Technol, 2005, 23(9): 2687-2695.

    [37] Wen Hong, Chen Lin, Pi Yazhi, et al.. Full-duplex radio-over-fiber system with optical millimeter-wave generation utilizing optical phase modulator[J]. Chinese J Lasers, 2007, 34(7): 935-939.

    [38] H Ou, B Chen, H Fu, K Zhu, et al.. Microwave-photonic frequency doubling utilizing phase modulator and fiber Bragg gratings[J]. Electron Lett, 2008, 44(2): 131-132.

    [39] G Maury, A Hilt, T Berceli, et al.. Microwave-frequency conversion methods by optical interferometer and photodiode[J]. IEEE Trans Microw Tech, 1997, 45(8): 1481-1485.

    [40] D Uttamchandani, H S Al-Raweshidy. Integrated optical mixer for RF applications[J]. Electron Lett, 1991, 27(1): 70-71.

    [41] J P Yao, G Maury, Y L Guennec, et al.. All-optical subcarrier frequency conversion using an electrooptic phase modulator[J]. IEEE Photon Technol Lett, 2005, 17(11): 2427-2429.

    [42] L V T Nguyen, D B Hunter. A photonic technique for microwave frequency measurement[J]. IEEE Photon Technol Lett, 2006, 18(5): 1188-1190.

    [43] X Zou, J P Yao. An optical approach to microwave frequency measurement with adjustable measurement range and resolution[J]. IEEE Photon Technol Lett, 2008, 20(12): 1989-1991.

    [44] H Chi, X Zou, J P Yao. An approach to the measurement of microwave frequency based on optical power monitoring[J]. IEEE Photon Technol Lett, 2008, 20(7): 1249-1251.

    [45] X Zou, H Chi, J P Yao. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair[J]. IEEE Trans Microw Theory Tech, 2009, 57(2): 505-511.

    [46] N Sarkhosh, H Emami, L Bui, et al.. Reduced cost photonic instantaneous frequency measurement system[J]. IEEE Photon Technol Lett, 2008, 20(7): 1521-1523.

    [47] H Emami, N Sarkhosh, L Bui, et al.. Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform[J]. Opt Express, 16(18): 13707-13712.

    [48] X Zhang, H Chi, S Zheng, et al.. Instantaneous microwave frequency measurement using an optical phase modulator[J]. IEEE Microw Compon Lett, 2009, 19(6): 422-424.

    [49] Wang Huan, Wu Xiangnong, Zhang Jing, et al.. Simulation of phase modulated instaneous frequency measurement on Optisystem[J]. Laser & Optoelectronics Progress, 2013, 50(1): 011202.

    CLP Journals

    [1] Guo Yue, Wang Xiaochao, Qiao Zhi, Fan Wei. Study on Spectrum Control through All-Fiber Multi-Pass Direct Phase Modulation[J]. Collection Of theses on high power laser and plasma physics, 2014, 12(1): 905010

    [2] Ye Lei, Wu Guiling, Su Feiran, Chen Jianping. Amplitude Correction Method of Time-Wavelength Interleaved Photonic Analog-to-Digital Conversion[J]. Chinese Journal of Lasers, 2016, 43(5): 505001

    Wei Zhaolin, Hu Shuling, Wang Xinlong, Shao Hongfeng. Development of Research on Phase Modulation to Intensity Modulation Conversion[J]. Laser & Optoelectronics Progress, 2013, 50(11): 110003
    Download Citation